Download MATLAB Toolbox for the LabelMe Image Database

利用Matlab Toolbox工具箱下载图像库

一、下载Matlab Toolbox工具箱

1. Github repository

We maintain the latest version of the toolbox on github. To pull the latest version, make sure that "git" is installed on your machine and then run "git clone https://github.com/CSAILVision/LabelMeToolbox.git" on the command line. You can refresh your copy to the latest version by running "git pull" from inside the project directory.

2. Zip file

The zip file is a snapshot of the latest source code on github.

二、下载图像库

Download the Dataset

There are two ways to work with the dataset: (1) downloading all the images via the LabelMe Matlab toolbox. The toolbox will allow you to customize the portion of the database that you want to download, (2) Using the images online via the LabelMe Matlab toolbox. This option is less preferred as it will be slower, but it will allow you to explore the dataset before downloading it. Once you have installed the database, you can use the LabelMe Matlab toolbox to read the annotation files and query the images to extract specific objects.

Option 1: Customizable download using the LabelMe Matlab toolbox

Before downloading the dataset, we only ask you to label some images using the annotation tool online. Any new labels that you will add, will be inmediately ready for download.

Step 1: Download the LabelMe Matlab toolbox and add the toolbox to the Matlab path.

Step 2: The function LMinstall will download the database. There are three ways to use this function:

  • To download the entire dataset, type the following into Matlab:
 HOMEIMAGES = '/desired/path/to/Images';
HOMEANNOTATIONS = '/desired/path/to/Annotations';
LMinstall (HOMEIMAGES, HOMEANNOTATIONS); where "/desired/path/to/" is the desired location where the annotations and images will be stored.
This process will create the following directory structure under "/desired/path/to/":
./Annotations
./Annotations/folder1
...
./Annotations/folderN ./Images
./Images/folder1
...
./Images/folderN where folder1 through folderN are directories containing the images and annotations.
  • If you only want to download a list of specific folders, then run:
 HOMEIMAGES = '/desired/path/to/Images';
HOMEANNOTATIONS = '/desired/path/to/Annotations';
folderlist = {'05june05_static_street_porter'};
LMinstall (folderlist, HOMEIMAGES, HOMEANNOTATIONS);

This will download only one folder from the collection. You can see the complete list of folders here.

  • If you already have the dataset but want to update the annotations, then use LMinstall with four arguments:
 LMinstall (folders, images, HOMEIMAGES, HOMEANNOTATIONS);

Option 2: Access the online database directly with the LabelMe Matlab toolbox

Before downloading the dataset, we only ask you to label some images using the annotation tool online. Any new labels that you will add, will be inmediately ready for download. If you use the LabelMe Matlab toolbox, it is not necesary to download the database. You can use the online images and annotations in the same way as if they were on your local hard drive. This might be slow, but it will let you explore the database before downloading it. If you plan to use the database extensively, it is better to download a local copy for yourself. Here are a few Matlab commands that show how to use the online database:

 HOMEIMAGES = 'http://people.csail.mit.edu/brussell/research/LabelMe/Images';
HOMEANNOTATIONS = 'http://people.csail.mit.edu/brussell/research/LabelMe/Annotations'; D = LMdatabase(HOMEANNOTATIONS); % This will build an index, which will take few minutes. % Now you can visualize the images
LMplot(D, , HOMEIMAGES); % Or read an image
[annotation, img] = LMread(D, , HOMEIMAGES);

You can query the database to select the images you want and install only those ones. For instance, if you are interested only in images containing cars, you can run the following:

 % First create the list of images that you want:
[Q,j] = LMquery(D, 'object.name', 'car');
clear folderlist filelist
for i = :length(Q);
folderlist{i} = Q(i).annotation.folder;
filelist{i} = Q(i).annotation.filename;
end % Install the selected images:
HOMEIMAGES = '/desired/path/to/Images';
HOMEANNOTATIONS = '/desired/path/to/Annotations';
LMinstall (folderlist, filelist, HOMEIMAGES, HOMEANNOTATIONS);

参考:

[1] http://labelme.csail.mit.edu/Release3.0/browserTools/php/matlab_toolbox.php

[2] http://labelme.csail.mit.edu/Release3.0/browserTools/php/dataset.php

LabelMe图像数据集下载的更多相关文章

  1. SUN dataset图像数据集下载

    SUN dataset数据集,有两个不错的网址: http://vision.princeton.edu/projects/2010/SUN/ (普林斯顿大学) http://groups.csail ...

  2. 人工智能大数据,公开的海量数据集下载,ImageNet数据集下载,数据挖掘机器学习数据集下载

    人工智能大数据,公开的海量数据集下载,ImageNet数据集下载,数据挖掘机器学习数据集下载 ImageNet挑战赛中超越人类的计算机视觉系统微软亚洲研究院视觉计算组基于深度卷积神经网络(CNN)的计 ...

  3. 医学图像数据(二)——TCIA完整数据集下载方式

    1. 构建下载环境 l  TCIA数据集下载文件为.jnlp格式(JNLP(Java Network Launching Protocol )是java提供的一种可以通过浏览器直接执行java应用程序 ...

  4. scikit-learn数据集下载太慢的问题

    有时候用scikit-learn在线下载数据时太慢,因为网络或者其他原因,这时候我们可以先把数据集下载到本地,然后再把这个数据集放到scikit-learn的data中,首先我们需要找到 scikit ...

  5. MS coco数据集下载

    2017年12月02日 23:12:11 阅读数:10411 登录ms-co-co数据集官网,一直不能进入,FQ之后开看到下载链接.有了下载链接下载还是很快的,在我这儿晚上下载,速度能达到7M/s,所 ...

  6. Kaggle数据集下载

    Kaggle数据集下载步骤: 安装Kaggle库: 注册Kaggle账户: 找到数据集,接受rules: 在My Account>>API中,点击Create New API Token, ...

  7. MIR Flickr 1M 图像数据集(点击即可下载)

    Index of /mirflickr/mirflickr1m Name Last modified Size Description Parent Directory   -   exif.zip ...

  8. zhuan 常用图像数据集:标注、检索

      目录(?)[+]   1.搜狗实验室数据集: http://www.sogou.com/labs/dl/p.html 互联网图片库来自sogou图片搜索所索引的部分数据.其中收集了包括人物.动物. ...

  9. 【机器学习】【计算机视觉】非常全面的图像数据集《Actions》

    目录(?)[+]   1.搜狗实验室数据集: http://www.sogou.com/labs/dl/p.html 互联网图片库来自sogou图片搜索所索引的部分数据.其中收集了包括人物.动物.建筑 ...

随机推荐

  1. Readhat Linux5.5 安装SVNService(经验总结)

    Subversion独立服务和与apache整合服务. 一 .Svn独立服务安装 操作系统: Redhat Linux5.5 安装包获取: 下载 http://subversion.tigris.or ...

  2. LESS CSS 框架简介

    使用 LESS 简化层叠样式表(CSS)的编写 LESS 是动态的样式表语言,通过简洁明了的语法定义,使编写 CSS 的工作变得非常简单.本文将通过实例,为大家介绍这一框架. 简介 CSS(层叠样式表 ...

  3. Brush Mode --- Nyoj 737 分类: Brush Mode 2014-03-25 08:10 202人阅读 评论(0) 收藏

    石子合并(一) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述     有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆 ...

  4. NGUI 笔记

    1.动态加载Atlas,并用NGUITools添加Sprite UIAtlas MyAtlas = Resources.Load("MyAtlas", typeof(UIAtlas ...

  5. 学习NAnt Build .CS+Solution+MSBuild+SVN+NUnit+NUnitReport

    NAnt help:http://nant.sourceforge.net/release/latest/help/tasks/NAntContrib help:http://nantcontrib. ...

  6. HackPorts – Mac OS X 渗透测试框架与工具

    HackPorts是一个OS X 下的一个渗透框架. HackPorts是一个“超级工程”,充分利用现有的代码移植工作,安全专业人员现在可以使用数以百计的渗透工具在Mac系统中,而不需要虚拟机. 工具 ...

  7. Intent.ACTION广播大全

    Intent.ACTION广播大全 Intent.ACTION_AIRPLANE_MODE_CHANGED; //关闭或打开飞行模式时的广播 Intent.ACTION_BATTERY_CHANGED ...

  8. js获取,设置FCKeditor内容

    // 获取编辑器中HTML内容 function getEditorHTMLContents(EditorName) {     var oEditor = FCKeditorAPI.GetInsta ...

  9. ios中webservice报文的拼接

    1.报文头需要密码验证的 - (void)sendAsynWebServiceRequest:(NSString *)nameSpace method:(NSString *)method reque ...

  10. ASP.NET运行机制之一般处理程序(ashx)

    一. 概述 新建一个ashx文件  代码如下 <%@ WebHandler Language="C#" Class="TestHandler" %> ...