[再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)
设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.
[再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)的更多相关文章
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
- [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)
(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...
- [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)
试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...
随机推荐
- ext3grep
- Zabbix简介(第一章第一节)
Alexei Vladishev创建了Zabbix项目,当前处于活跃开发状态,Zabbix SIA提供支持. Zabbix是一个企业级的.开源的.分布式的监控套件 Zabbix可以监控网络和服务的监控 ...
- Ibm-jQuery教程学习笔记
一.概述 1.虽然 jQuery 本身并非一门新的语言.但是,学习其语法有助于我们熟练.灵活地使用它.回顾下我们熟悉的 CSS 语法,不难发现 jQuery 的语法与 CSS 有相似之处. jQuer ...
- 271. Encode and Decode Strings
题目: Design an algorithm to encode a list of strings to a string. The encoded string is then sent ove ...
- jQuery-瀑布流-绝对定位布局(二)(延迟AJAX加载图片)
jQuery-瀑布流-绝对定位布局(二)(延迟AJAX加载图片) 瀑布流-绝对定位布局,与浮动布局的区别在于 1.布局不一样: 绝对定位:一个UL里面放置所有的绝对定位的LI: 浮动布局:多个(一 ...
- [转载]TexturePacker 如何使用自带的加密功能及在cocos2dx中的使用
在cocos2dx中使用纹理图集是非常节省资源的,在这里推荐 TexturePacker,而且 TexturePacker工具的加密接口也非常的好用,下面就来介绍一下... TexturePacker ...
- django如何检查创建的模型(model)是否有语法错误或者逻辑错误
首先,用下面的命令验证模型的有效性: python manage.py validate validate 命令检查你的模型的语法和逻辑是否正确. 如果一切正常,你会看到 0 errors found ...
- poj - 2377 Bad Cowtractors&&poj 2395 Out of Hay(最大生成树)
http://poj.org/problem?id=2377 bessie要为FJ的N个农场联网,给出M条联通的线路,每条线路需要花费C,因为意识到FJ不想付钱,所以bsssie想把工作做的很糟糕,她 ...
- 【HDOJ】5657 CA Loves Math
1. 题目描述对于给定的$a, n, mod, a \in [2,11], n \in [0, 10^9], mod \in [1, 10^9]$求出在$[1, a^n]$内的所有$a$进制下的数并且 ...
- JSON 之 SuperObject(10): Merge、Clone、ForcePath
unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, For ...