«问题描述:
给定一个N*N 的方形网格,设其左上角为起点◎,坐标为(1,1),X 轴向右为正,Y
轴向下为正,每个方格边长为1,如图所示。一辆汽车从起点◎出发驶向右下角终点▲,其
坐标为(N,N)。在若干个网格交叉点处,设置了油库,可供汽车在行驶途中加油。汽车在
行驶过程中应遵守如下规则:
(1)汽车只能沿网格边行驶,装满油后能行驶K 条网格边。出发时汽车已装满油,在起
点与终点处不设油库。
(2)汽车经过一条网格边时,若其X 坐标或Y 坐标减小,则应付费用B,否则免付费用。
(3)汽车在行驶过程中遇油库则应加满油并付加油费用A。
(4)在需要时可在网格点处增设油库,并付增设油库费用C(不含加油费用A)。
(5)(1)~(4)中的各数N、K、A、B、C均为正整数,且满足约束:2 <= N <= 100,2 <= K <= 10。

设计一个算法,求出汽车从起点出发到达终点的一条所付费用最少的行驶路线。

«编程任务:
对于给定的交通网格,计算汽车从起点出发到达终点的一条所付费用最少的行驶路线。
«数据输入:
由文件trav.in提供输入数据。文件的第一行是N,K,A,B,C的值。第二行起是一
个N*N 的0-1 方阵,每行N 个值,至N+1 行结束。方阵的第i 行第j 列处的值为1 表示在
网格交叉点(i,j)处设置了一个油库,为0 时表示未设油库。各行相邻两个数以空格分隔。
«结果输出:
程序运行结束时,将最小费用输出到文件trav.out中。
输入文件示例 输出文件示例
trav.in
9 3 2 3 6
0 0 0 0 1 0 0 0 0
0 0 0 1 0 1 1 0 0
1 0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0 1
1 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 1
1 0 0 1 0 0 0 1 0

0 1 0 0 0 0 0 0 0

trav.out

12

/*
分层图最短路。
这个题目看上去很难处理,是因为它有很多限制条件,如果我们把这些限制条件去除之后,就变成了单纯求最短路。
至于这些条件,我们可以再跑最短路的时候分类讨论。
如果当前没有油了,就要加油;如果当前有油,就可以前往四周的地方。
然后再做最短路的时候可以加一维,表示当前的油量,多出来的一维可以用分层图最短路来实现。
*/
#include<iostream>
#include<cstdio>
#include<queue>
#define N 1000010
#define inf 1000000000
using namespace std;
int head[N],dis[N],inq[N],map[][],vc[],n,K,A,B,C,S,cnt;
int dx[]={,-,,};
int dy[]={-,,,};
struct node{int v,w,pre;}e[N*];
queue<int> q;
void add(int u,int v,int w){
e[++cnt].v=v;e[cnt].w=w;e[cnt].pre=head[u];head[u]=cnt;
}
int id(int k,int i,int j){return k*n*n+(i-)*n+j;}
void spfa(){
for(int i=;i<=id(K,n,n);i++) dis[i]=inf;
dis[S]=;q.push(S);
while(!q.empty()){
int u=q.front();q.pop();inq[u]=;
for(int i=head[u];i;i=e[i].pre)
if(dis[e[i].v]>dis[u]+e[i].w){
dis[e[i].v]=dis[u]+e[i].w;
if(!inq[e[i].v]){
inq[e[i].v]=;
q.push(e[i].v);
}
}
}
}
int main(){
freopen("trav.in","r",stdin);
freopen("trav.out","w",stdout);
scanf("%d%d%d%d%d",&n,&K,&A,&B,&C);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
scanf("%d",&map[i][j]);
S=id(K,,);vc[]=C;
for(int k=;k<=K;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++){
int tmp=id(k,i,j);
if(!k) {add(tmp,id(K,i,j),A+vc[map[i][j]]);continue;}
for(int d=;d<;d++){
int x=i+dx[d],y=j+dy[d];
if(x<||x>n||y<||y>n) continue;
if(d<){
if(map[x][y]) add(tmp,id(K,x,y),A+B);
else add(tmp,id(k-,x,y),B);
}
else {
if(map[x][y]) add(tmp,id(K,x,y),A);
else add(tmp,id(k-,x,y),);
}
}
if(k<K) add(tmp,id(K,i,j),A+vc[map[i][j]]);
}
spfa();
int ans=inf;
for(int i=;i<=K;i++)
ans=min(ans,dis[id(i,n,n)]);
printf("%d",ans);
return ;
}

汽车加油行驶(cogs 737)的更多相关文章

  1. P4009 汽车加油行驶问题

    P4009 汽车加油行驶问题 最短路 清一色的spfa....送上一个堆优化Dijkstra吧(貌似代码还挺短) 顺便说一句,堆优化Dj跑分层图灰常好写 #include<iostream> ...

  2. 洛谷 P4009 汽车加油行驶问题 解题报告

    P4009 汽车加油行驶问题 题目描述 给定一个\(N×N\)的方形网格,设其左上角为起点◎,坐标(1,1) ,\(X\)轴向右为正,\(Y\)轴向下为正,每个方格边长为1 ,如图所示. 一辆汽车从起 ...

  3. 【题解】【网络流24题】汽车加油行驶问题 [P4009] [Loj6223]

    [题解][网络流24题]汽车加油行驶问题 [P4009] [Loj6223] 传送门:汽车加油行驶问题 \([P4009]\) \([Loj6223]\) [题目描述] 给出一个 \(N \times ...

  4. 【网络流24题】 No.15 汽车加油行驶问题 (分层图最短路i)

    [题意] 问题描述:给定一个 N*N 的方形网格,设其左上角为起点◎, 坐标为( 1, 1), X 轴向右为正, Y轴向下为正, 每个方格边长为 1, 如图所示. 一辆汽车从起点◎出发驶向右下角终点▲ ...

  5. 【刷题】LOJ 6223 「网络流 24 题」汽车加油行驶问题

    题目描述 给定一个 \(\text{N}\times \text{N}\) 的方形网格,设其左上角为起点◎,坐标为 \(\text{(1,1)}\) ,\(\text{X}\) 轴向右为正, \(\t ...

  6. 洛谷P4009 汽车加油行驶问题

    题目描述 给定一个 N \times NN×N 的方形网格,设其左上角为起点◎,坐标(1,1)(1,1),XX 轴向右为正, YY 轴向下为正,每个方格边长为 11 ,如图所示. 一辆汽车从起点◎出发 ...

  7. 【洛谷4009】汽车加油行驶问题(SPFA乱搞)

    点此看题面 大致题意:给定一个\(N*N\)的方形网格,其中1表示这个格子有油库,0表示这个格子没油库,且汽车加满油可以行驶\(k\)条网格边.如果遇到油库必须加满油并花费\(A\)元,如果\(X\) ...

  8. 洛谷P4009 汽车加油行驶问题(分层最短路)

    传送门 说好的网络流24题呢……上次是状压dp,这次怎么又最短路了…… 不过倒是用这题好好学了一下分层图最短路 把每一个位置$(x,y)$,油量剩余$k$表示为一个状态,然后转化成一个$n$进制数,这 ...

  9. 洛谷P4009汽车加油行驶问题——网络流24题(最短路)

    题目:https://www.luogu.org/problemnew/show/P4009 网络流24题中不是网络流的最短路题: 把每个点拆成各个油量上的点,根据要求连边即可: 注意:点数最大为10 ...

随机推荐

  1. SpringBoot之自动配置原理

    我在前面的Helloworld的程序中已经分析过一次,配置原理了: 1).SpringBoot启动的时候加载主配置类,开启了自动配置功能 @EnableAutoConfiguration 2).@En ...

  2. JSTree下的模糊查询算法——树结构数据层次遍历和递归分治地深入应用

    A表示区域节点,S表示站点结点 问题描述:现有jstree包含左图中的所有结点信息(包含区域结点和站点结点),需要做到输入站点名称模糊查询,显示查询子树结果如右图 解决策略: 1.先模糊查询所得站点所 ...

  3. mysql主从复制及双主复制

    之前做过一次在单台机器上的多实例的mysql,这次分开做,使用两台主机. 这里使用的主机地址分别为: MASTER:192.168.214.135 SLAVE  : 192.168.214.128 这 ...

  4. k8s基于RBAC的访问控制(用户授权)

    kubernetes的API Server常用的授权插件有:   Node.ABAC.RBAC.Webhook我们重点说一下RBAC的访问控制逻辑RBAC(Role base access contr ...

  5. centos7安装mongodb3.6

    1. 安装一下centos(6.5) + 虚拟机,在VMware中安装mongodb 2. 下载mongodb最新版本:mongodb-linux-x86_64-3.6.4.tgz,传到centos ...

  6. 常用的几个JQuery代码片段

    1. 导航菜单背景切换效果 在项目的前端页面里,相对于其它的导航菜单,激活的导航菜单需要设置不同的背景.这种效果实现的方式有很多种,下面是使用JQuery实现的一种方式: //注意:代码需要修饰完善 ...

  7. url传参及重定向

    成功跳转$this -> success('提示语',跳转路径,返回的数据,时间,发送的 Header 信息)跳转失败$this -> error('提示语',跳转路径,返回的数据,时间, ...

  8. foreach遍历数组

    foreach遍历一维数组 <?php //PHP数组遍历:foreach //定义数组 $arr=array(1,2,3,4,5,6,7,8,9,10); //foreach循环 foreac ...

  9. Problem E. TeaTree - HDU - 6430 (树的启发式合并)

    题意 有一棵树,每个节点有一个权值. 任何两个不同的节点都会把他们权值的\(gcd\)告诉他们的\(LCA\)节点.问每个节点被告诉的最大的数. 题解 第一次接触到树的启发式合并. 用一个set维护每 ...

  10. POJ3436------ACM Computer Factory

    题目链接 ACM Computer Factory Description As you know, all the computers used for ACM contests must be i ...