Description

现在给你一张N个点M条边的连通图,我们保证N−1≤M≤N,且无重边和自环。

每一个点都有一种颜色,非黑即白。初始时,所有点都是白色的。

“全”想通过执行若干次某种操作的方式,来将所有的点变成黑色。操作方式如下:

选择一对颜色相同的相邻的节点(存在边直接连接彼此),将它们的颜色反转。即若原来都是白色,则都变成黑色,反之亦然。

现在“全”想知道,他能否通过执行这种操作以达到目的。如果可以,他还希望步数尽可能的少。

Input

第一行有两个正整数N和M(2≤N≤105,N−1≤M≤N)

接下来M行,每行2个正整数a和b(1≤a,b≤N),表示每条边连接的两个点。

Output

如果存在操作方案使得“全”能达到目的,请输出最少操作次数。

否则,请输出−1

题解:

这里

分三类:树,奇环,偶环

1.树

我们可以吧两个相邻的两个颜色相同的点翻转转化为,我们把原树二分图染色,把两个相邻的两个不同颜色的点交换。那我们的目标就是把所有黑点变成白点,白点变为黑点

我们可以看做一个球入洞的问题,白点上都有一个球,黑点上都有一个洞。我们把每个球都放进一个洞里,问最小要移多少次才能使全部球都入洞。

那么方案可行的条件是球和洞的数量相等。

那么我们把白点权值设为1,黑点为-1,那么答案就为

\[\sum_i sum_i
\]

\(sum_i\) 为子树 \(i\) 的点权和(仔细想想能明白的)。

以上就是为树的解法。

2.奇环

奇环只不过是在树上加一条边罢了。

奇环多出来的那条边的两端肯定是同色的,所以对这条边操作一次可以使两个端点同时加上或是减少若干个球。

那我们如果图中球数和洞数不一样的话,我们可以通过操作这条边补成相等。

就像这样:

if(sum&1)return printf("-1"),0;	//sum为球数和洞数的差
ans+=abs(sum>>1);
siz[S]-=sum>>1,siz[T]-=sum>>1;

奇环卒……

3.偶环:

偶环条的两个端点不是同一种颜色的,那我们可以从一个点运 \(x\) 个球到另一个点。

那我们其中一个点到 \(lca\) 的 \(sum\) 都要加 \(x\),另一边要减 \(x\)。

如图:

我们可以得到这些修改后的sum[i]。

我们换一下顺序全部写成 \(x-k[i]*sum[i]\) 的形式。

答案就为那些不受影响到点的sum和,加上 \(\sum_i |x-k[i]*sum[i]|\)

这不是初中的典型数学问题吗?找到一个x使得他到他到数轴上其他n个点的距离最小,

取中位数就行了。

AC……

COMPLETE CODE:

#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstdio>
using namespace std; long long ans=0;
int tot=0,h[100005];
int n,m,x,y,S,T,k[100005],siz[100005];
int s[100005],top;
bool odd;
struct Edge{
int x,next;
}e[200005]; inline void add_edge(int x,int y){
e[++tot].x=y;
e[tot].next=h[x],h[x]=tot;
} void dfs1(int x,int fa){
for(int i=h[x];i;i=e[i].next){
if(e[i].x==fa)continue;
if(siz[e[i].x]){
if(siz[x]==siz[e[i].x])odd=true;
S=x,T=e[i].x;
}else{
siz[e[i].x]=-siz[x];
dfs1(e[i].x,x);
}
}
} void dfs2(int x,int fa){
for(int i=h[x];i;i=e[i].next){
if(e[i].x==fa||(x==S&&e[i].x==T)||(x==T&&e[i].x==S))continue;
dfs2(e[i].x,x);
siz[x]+=siz[e[i].x];
k[x]+=k[e[i].x];
}
} int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
scanf("%d%d",&x,&y);
add_edge(x,y);
add_edge(y,x);
}
siz[1]=1,dfs1(1,0);
int sum=0;
for(int i=1;i<=n;i++)sum+=siz[i];
if(m==n-1){
if(sum)return printf("-1"),0;
}else{
if(odd){
if(sum&1)return printf("-1"),0;
ans+=abs(sum>>1);
siz[S]-=sum>>1,siz[T]-=sum>>1;
}else{
if(sum)return printf("-1"),0;
else k[S]=1,k[T]=-1;
}
}
dfs2(1,0);
for(int i=1;i<=n;i++){
if(k[i])s[++top]=k[i]*siz[i];
else ans+=abs(siz[i]);
}
s[++top]=0;
sort(s+1,s+top+1);
int mid=s[top+1>>1];
for(int i=1;i<=top;i++)ans+=abs(s[i]-mid);
printf("%lld",ans);
}

[AGC004F] Namori的更多相关文章

  1. 2017国家集训队作业[agc004f]Namori

    2017国家集训队作业[agc004f]Namori 题意: 给你一颗树或环套树,树上有\(N\)个点,有\(M\)条边.一开始,树上的点都是白色,一次操作可以选择一条端点颜色相同的边,使它的端点颜色 ...

  2. AGC004F Namori 树形DP、解方程(?)

    传送门 因为不会列方程然后只会树上的,被吊打了QAQ 不难想到从叶子节点往上计算答案.可以考虑到可能树上存在一个点,在它的儿子做完之后接着若干颜色为白色的儿子,而当前点为白色,只能帮助一个儿子变成黑色 ...

  3. Atcoder:AGC004F Namori

    传送门 先考虑树,树是一个二分图. 看到是二分图并且每次是对两边的同色的点反色可以想到转化:让奇数层的点为黑,偶数为白,变成每次可以交换两个点的颜色. 把黑看成 \(-1\),白看成 \(1\),那么 ...

  4. [agc004f]Namori 贪心

    Description ​ 现在给你一张NN个点MM条边的连通图,我们保证N−1≤M≤NN−1≤M≤N,且无重边和自环. ​ 每一个点都有一种颜色,非黑即白.初始时,所有点都是白色的. ​ 想通过执行 ...

  5. AtCoder AGC004F Namori (图论)

    题目链接 https://atcoder.jp/contests/agc004/tasks/agc004_f 题解 神仙题.. 首先考虑树的情况,树是二分图,因此假设我们对二分图进行黑白染色,那么操作 ...

  6. NOIp模拟赛二十九

    又是受虐的一天呢~接下来四天都要打模拟赛QAQ 今日分数:0(100)+100+0=100 A题O(读入)结论题判断结果时没return 0被subtask卡成0分,喜提fstQAQ,B题DP,C题不 ...

  7. AtCoder刷题记录

    构造题都是神仙题 /kk ARC066C Addition and Subtraction Hard 首先要发现两个性质: 加号右边不会有括号:显然,有括号也可以被删去,答案不变. \(op_i\)和 ...

  8. 贪心/构造/DP 杂题选做Ⅲ

    颓!颓!颓!(bushi 前传: 贪心/构造/DP 杂题选做 贪心/构造/DP 杂题选做Ⅱ 51. CF758E Broken Tree 讲个笑话,这道题是 11.3 模拟赛的 T2,模拟赛里那道题的 ...

  9. 【agc004F】Namori

    Portal -->agc004F Solution  好神仙的转化qwq ​  首先我们可以先考虑\(m=n-1\)的情况下,也就是树的情况下要怎么做  我们可以将这个问题转化一下:我们对这颗 ...

随机推荐

  1. vue学习之路 - 4.基本操作(下)

    vue学习之路 - 4.基本操作(下) 简述:本章节主要介绍 vue 的一些其他常用指令. Vue 指令 这里将 vue 的指令分为系统内部指令(vue 自带指令)和用户自定义指令两种. 系统内部指令 ...

  2. Tomcat:javax.management.InstanceNotFoundException: com.alibaba.druid:type=DruidDataSourceStat异常

    问题: 在关闭tomcat时: Tomat报出一下异常:ERROR [com.alibaba.druid.stat.DruidDataSourceStatManager] – unregister m ...

  3. UNIX网络通信

    一.网络协议 国际标准化组织(ISO)定义了网络协议的基本框架,被称为OSI模型.OSI模型包括应用层.表示层.会话层.传输层.网络层.数据链路层及物理层.而OSI模型过于复杂至今没有得到实际的应用. ...

  4. java设计模式2--工厂模式

    1.工厂模式特点 可以工厂获取我们所需要的类.我们不需要知道工厂的内部是如何实现的,我们只需要告诉工厂我们需要哪个类,工厂就会自动返回我想要的类. 简单来说:工厂帮我们隐藏了复杂的逻辑处理过程,我们只 ...

  5. vue 项目中使用mock假数据实现前后端分离

    也是查了很多的资料,整理出来.实现了前后端的分离,用到的技术vue-cli,webpack,node,json-server.首先全局安装json-server cnpm i json-server ...

  6. 常见/dev/mapper/centos-root扩容

    系统Centos 7 df -h 查看当前分区使用情况: dfisk /dev/xvda 对/dev/xvda磁盘进行操作(新建分区及格式化) n p 回车 默认分区号: 回车 默认磁盘创建开始位置: ...

  7. Codeforces Round #459 (Div. 2):B. Radio Station

    B. Radio Station time limit per test2 seconds memory limit per test256 megabytes Problem Dsecription ...

  8. Codeforces Round #459 (Div. 2)-A. Eleven

    A. Eleven time limit per test1 second memory limit per test256 megabytes Problem Description Eleven ...

  9. #3 working with data stored in files && securing your application (PART II)

    Security problems is more and more important on the internet today. You can see the problems . This ...

  10. OpenCV学习笔记(十) 直方图操作

    直方图计算 直方图可以统计的不仅仅是颜色灰度, 它可以统计任何图像特征 (如 梯度, 方向等等).直方图的一些具体细节: dims: 需要统计的特征的数目, 在上例中, dims = 1 因为我们仅仅 ...