Codeforces Round #295 (Div. 1) C. Pluses everywhere
昨天ZZD大神邀请我做一道题,说这题很有趣啊。
哇,然后我被虐了。
Orz ZZD
题目大意:
你有一个长度为n的'0-9'串,你要在其中加入k个'+'号,每种方案就会形成一个算式,算式算出来的值记做这次方案的贡献。
问:所有方案的贡献,对1e9+7取模。
n,k<=1e5.
首先我和zzd先探讨了一会儿暴力一点的做法,唔,非常好弄的是k*n^2,枚举子串,考虑这个子串出现在了多少个方案中,然后就是枚举左边多少个'+',然后一堆组合数...啪啦啪啦...
然后觉得既然两边分的'+'号加起来的总和相等,是不是可以不用枚举呢,比如一个预处理什么的...啪啦啪啦...
好啦,感觉上面的研究不下去了...
然后又想,不是要O(n)么,感觉像是对每个字符考虑,考虑它作为个位、十位、百位...等等的贡献。
怎么算呢?似乎现在状态比刚才好一点了?...
首先是i作为这一段的开头,j作为这一段的结尾。
现在是i作为这一段的第j位...好啦...然后我还是想不到= =
ZZD就开始秒题啦...因为原题相当于在n-1的空隙中放k个隔板。
那么若i不在最后一段,那么我先强制在i+j后插一个隔板[保证i是第j位],并且强制i到i+j之间的j-1个位置不能放,同时i+j后的位置已经放了,所以还剩n-j-1个位置,k-1个隔板,即C(n-j-1,k-1)种方案。
若i在最后一段,那么我强制i到n的j-1个位置不能放,就是C(n-j,k)种方案。
好啊,发现这个东西居然和i都没有关系,那我是不是可以把i绑起来算呢?[当然i可以用来判断这个位置是不是在最后一段,也可以判断这里到底能不能作为第j位]。
于是我们可以枚举长度l。
所以在可行的位置[1...n-l+1]中,最后一位是作为最后一段,其它的值是相同的,所以就是一个前缀和*这一坨+最后一个位置的特判,就可以了。
[怎么线性求组合数?] <-大家都会吧?...
不过看在我不会的份上,还是说一下吧...就是利用的是逆元的思想,C(n,r)=n!/(n-r)!/r!,那么要是预处理出所有的阶乘以及所有阶乘的逆元,每次查询就是O(1)的了...
预处理阶乘O(n)没问题,预处理出阶乘的逆元怎么办呢?...
机智的ZZD发现:1/(n-1)!=1/n!*n
%%%,先算n!的逆元,然后倒过来再乘一遍就可以了。
[上面的描述可能和代码中的含义有小小的不同,代码中l表示的是长度len-1,所以和上面有小小不同]
#include<cstdio>
#include<cstring>
#include<algorithm> using namespace std; const int maxn=;
const int mod=1e9+;
typedef long long ll; int n,k;
ll s[maxn],lv[maxn],lv1[maxn];
char num[maxn];
ll ans; ll C(int n,int r){
if(r>n) return ;
if(r== || n==r) return ;
return ((lv[n]*lv1[r])%mod*lv1[n-r])%mod;
} ll power(ll a,int k){
ll ans=;
while(k){
if(k&) ans=ans*a%mod;
k>>=;a=a*a%mod;}
return ans;
} int main(){
#ifndef ONLINE_JUDGE
freopen("C.in","r",stdin);
freopen("C.out","w",stdout);
#endif scanf("%d%d",&n,&k);
scanf("%s",num+); for(int i=;i<=n;i++)
s[i]=(s[i-]+num[i]-'')%mod; lv[]=;
for(int i=;i<=n;i++)
lv[i]=lv[i-]*i%mod;
lv1[n]=power(lv[n],mod-);
for(int i=n-;i>=;i--)
lv1[i]=lv1[i+]*(i+)%mod; for(int l=;l<n;l++){
ans=(ans+(s[n-l-]*C(n-l-,k-))%mod*power(,l))%mod;
ans=(ans+((num[n-l]-'')*C(n-l-,k))%mod*power(,l))%mod;
} printf("%I64d",ans);
return ;
}
Codeforces Round #295 (Div. 1) C. Pluses everywhere的更多相关文章
- Codeforces Round #295 (Div. 2)
水 A. Pangram /* 水题 */ #include <cstdio> #include <iostream> #include <algorithm> # ...
- 【记忆化搜索】Codeforces Round #295 (Div. 2) B - Two Buttons
题意:给你一个数字n,有两种操作:减1或乘2,问最多经过几次操作能变成m: 随后发篇随笔普及下memset函数的初始化问题.自己也是涨了好多姿势. 代码 #include<iostream> ...
- codeforces 521a//DNA Alignment// Codeforces Round #295(Div. 1)
题意:如题定义的函数,取最大值的数量有多少? 结论只猜对了一半. 首先,如果只有一个元素结果肯定是1.否则.s串中元素数量分别记为a,t,c,g.设另一个串t中数量为a',t',c',g'.那么,固定 ...
- Codeforces Round #295 (Div. 2)C - DNA Alignment 数学题
C. DNA Alignment time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...
- Codeforces Round #295 (Div. 2)B - Two Buttons BFS
B. Two Buttons time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- Codeforces Round #295 (Div. 2)A - Pangram 水题
A. Pangram time limit per test 2 seconds memory limit per test 256 megabytes input standard input ou ...
- Codeforces Round #295 (Div. 2)---B. Two Buttons( bfs步数搜索记忆 )
B. Two Buttons time limit per test : 2 seconds memory limit per test :256 megabytes input :standard ...
- Codeforces Round #295 (Div. 2) B. Two Buttons
B. Two Buttons time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- Codeforces Round #295 (Div. 2) B. Two Buttons 520B
B. Two Buttons time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
随机推荐
- Leetcode30--->Substring with Concatenation of All Words(主串中找出连接给定所有单词的子串的位置)
题目:给定一个字符串S(主串),一个字符串数组words,其中的字符串的长度相同.找到所有的子串位置,要求是words中字符串的一个连接: 举例: For example, given:s: &quo ...
- [git 学习篇] git文件版本回退再学习
需求; 准备把readme.txt回退到上一个版本,也就是“add distributed”的那个版本 首先,Git必须知道当前版本是哪个版本,在Git中,用HEAD表示当前版本,也就是最新的提交3 ...
- VMware RHEL6.3 开启网络连接
确认/etc/sysconfig/network是否存在,如果不存在,service network 命令使用不了.新建: NETWORKING=yes HOSTNAME=RHEL6. GATEWAY ...
- 区别Transform、Transition、Animation
另一篇参考文章:http://www.7755.me/Article/CSS3/39/ 近来上班之外就是研究研究CSS动画,下面是第一阶段总结.话说为加强记忆,实则想抛砖引玉! 标题直译一下就是: ...
- [luoguP3355] 骑士共存问题(二分图最大独立集)
传送门 模型 二分图最大独立集,转化为二分图最大匹配,从而用最大流解决. 实现 首先把棋盘黑白染色,使相邻格子颜色不同. 把所有可用的黑色格子看做二分图X集合中顶点,可用的白色格子看做Y集合顶点. 建 ...
- node命令行开发
node命令行开发比较出名的就是commander和yargs,以及inquirer,但是很少有文章将三个模块进行对比. 这里简单的描述一下: 1. commander直观,易上手,但是功能较弱,没有 ...
- Django自定义User模型和登录验证
用户表已存在(与其他App共用),不能再使用Django内置的User模型和默认的登录认证.但是还想使用Django的认证框架(真的很方便啊). 两个步骤: 1)自定义Use模型,为了区分系统的Use ...
- hdu 6108 小C的倍数问题
小C的倍数问题 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Sub ...
- 2-sat 问题 【例题 Flags(2-sat+线段树优化建图)】
序: 模拟赛考了一道 2-sat 问题.之前从来没听过…… 考完才发现其实这个东东只要一个小小的 tarjan 求强连通分量就搞定了. 这个方法真是巧妙啊,拿来讲讲. What is it? [・_・ ...
- 【CF713C】Sonya and Problem Wihtout a Legend(离散化,DP)
题意:给你一个数列,对于每个数字你都可以++或者−− 然后花费就是你修改后和原数字的差值,然后问你修改成一个严格递增的,最小花费 思路:很久以前做过一道一模一样的 严格递增很难处理,就转化为非严格递增 ...