Spark技术内幕: Task向Executor提交的源代码解析
在上文《Spark技术内幕:Stage划分及提交源代码分析》中,我们分析了Stage的生成和提交。可是Stage的提交,仅仅是DAGScheduler完毕了对DAG的划分,生成了一个计算拓扑,即须要依照顺序计算的Stage,Stage中包括了能够以partition为单位并行计算的Task。我们并没有分析Stage中得Task是怎样生成而且终于提交到Executor中去的。
这就是本文的主题。
从org.apache.spark.scheduler.DAGScheduler#submitMissingTasks開始,分析Stage是怎样生成TaskSet的。
假设一个Stage的全部的parent stage都已经计算完毕或者存在于cache中。那么他会调用submitMissingTasks来提交该Stage所包括的Tasks。
org.apache.spark.scheduler.DAGScheduler#submitMissingTasks的计算流程例如以下:
- 首先得到RDD中须要计算的partition,对于Shuffle类型的stage。须要推断stage中是否缓存了该结果;对于Result类型的Final Stage。则推断计算Job中该partition是否已经计算完毕。
- 序列化task的binary。Executor能够通过广播变量得到它。每一个task执行的时候首先会反序列化。这样在不同的executor上执行的task是隔离的,不会相互影响。
- 为每一个须要计算的partition生成一个task:对于Shuffle类型依赖的Stage,生成ShuffleMapTask类型的task;对于Result类型的Stage,生成一个ResultTask类型的task
- 确保Task是能够被序列化的。由于不同的cluster有不同的taskScheduler,在这里推断能够简化逻辑。保证TaskSet的task都是能够序列化的
- 通过TaskScheduler提交TaskSet。
pipeline。能够称为大数据处理的基石。仅仅有数据进行pipeline处理,才干将其放到集群中去执行。
对于一个task来说,它从数据源获得逻辑。然后依照拓扑顺序,顺序执行(实际上是调用rdd的compute)。
private[spark] class TaskSet(
val tasks: Array[Task[_]],
val stageId: Int,
val attempt: Int,
val priority: Int,
val properties: Properties) {
val id: String = stageId + "." + attempt override def toString: String = "TaskSet " + id
}
- org.apache.spark.scheduler.TaskSchedulerImpl#submitTasks
- org.apache.spark.scheduler.SchedulableBuilder#addTaskSetManager
- org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend#reviveOffers
- org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.DriverActor#makeOffers
- org.apache.spark.scheduler.TaskSchedulerImpl#resourceOffers
- org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.DriverActor#launchTasks
- org.apache.spark.executor.CoarseGrainedExecutorBackend.receiveWithLogging#launchTask
- org.apache.spark.executor.Executor#launchTask
def launchTask(
context: ExecutorBackend, taskId: Long, taskName: String, serializedTask: ByteBuffer) {
val tr = new TaskRunner(context, taskId, taskName, serializedTask)
runningTasks.put(taskId, tr)
threadPool.execute(tr) // 開始在executor中执行
}
final def run(attemptId: Long): T = {
context = new TaskContext(stageId, partitionId, attemptId, runningLocally = false)
context.taskMetrics.hostname = Utils.localHostName()
taskThread = Thread.currentThread()
if (_killed) {
kill(interruptThread = false)
}
runTask(context)
}
对于原来提到的两种Task,即
- org.apache.spark.scheduler.ShuffleMapTask
- org.apache.spark.scheduler.ResultTask
override def runTask(context: TaskContext): U = {
// Deserialize the RDD and the func using the broadcast variables.
val ser = SparkEnv.get.closureSerializer.newInstance()
val (rdd, func) = ser.deserialize[(RDD[T], (TaskContext, Iterator[T]) => U)](
ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader) metrics = Some(context.taskMetrics)
try {
func(context, rdd.iterator(partition, context))
} finally {
context.markTaskCompleted()
}
}
override def runTask(context: TaskContext): MapStatus = {
// Deserialize the RDD using the broadcast variable.
val ser = SparkEnv.get.closureSerializer.newInstance()
val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])](
ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
//此处的taskBinary即为在org.apache.spark.scheduler.DAGScheduler#submitMissingTasks序列化的task的广播变量取得的 metrics = Some(context.taskMetrics)
var writer: ShuffleWriter[Any, Any] = null
try {
val manager = SparkEnv.get.shuffleManager
writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)
writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]]) // 将rdd计算的结果写入memory或者disk
return writer.stop(success = true).get
} catch {
case e: Exception =>
if (writer != null) {
writer.stop(success = false)
}
throw e
} finally {
context.markTaskCompleted()
}
}
对于这两个task都用到的taskBinary,即为在org.apache.spark.scheduler.DAGScheduler#submitMissingTasks序列化的task的广播变量取得的。
以后的每一个周末。都会奉上某个细节的实现。
Spark技术内幕: Task向Executor提交的源代码解析的更多相关文章
- Spark技术内幕: Task向Executor提交的源码解析
在上文<Spark技术内幕:Stage划分及提交源码分析>中,我们分析了Stage的生成和提交.但是Stage的提交,只是DAGScheduler完成了对DAG的划分,生成了一个计算拓扑, ...
- Spark技术内幕:Worker源码与架构解析
首先通过一张Spark的架构图来了解Worker在Spark中的作用和地位: Worker所起的作用有以下几个: 1. 接受Master的指令,启动或者杀掉Executor 2. 接受Master的指 ...
- Spark技术内幕:Stage划分及提交源码分析
http://blog.csdn.net/anzhsoft/article/details/39859463 当触发一个RDD的action后,以count为例,调用关系如下: org.apache. ...
- Spark技术内幕:Master的故障恢复
Spark技术内幕:Master基于ZooKeeper的High Availability(HA)源码实现 详细阐述了使用ZK实现的Master的HA,那么Master是如何快速故障恢复的呢? 处于 ...
- Spark技术内幕:Stage划分及提交源代码分析
当触发一个RDD的action后.以count为例,调用关系例如以下: org.apache.spark.rdd.RDD#count org.apache.spark.SparkContext#run ...
- Spark技术内幕:Shuffle Map Task运算结果的处理
Shuffle Map Task运算结果的处理 这个结果的处理,分为两部分,一个是在Executor端是如何直接处理Task的结果的:还有就是Driver端,如果在接到Task运行结束的消息时,如何对 ...
- 我的第一本著作:Spark技术内幕上市!
现在各大网站销售中! 京东:http://item.jd.com/11770787.html 当当:http://product.dangdang.com/23776595.html 亚马逊:http ...
- Spark技术内幕:Client,Master和Worker 通信源代码解析
Spark的Cluster Manager能够有几种部署模式: Standlone Mesos YARN EC2 Local 在向集群提交计算任务后,系统的运算模型就是Driver Program定义 ...
- Spark技术内幕:Executor分配详解
当用户应用new SparkContext后,集群就会为在Worker上分配executor,那么这个过程是什么呢?本文以Standalone的Cluster为例,详细的阐述这个过程.序列图如下: 1 ...
随机推荐
- 【bzoj3744】Gty的妹子序列 分块+树状数组+主席树
题目描述 我早已习惯你不在身边, 人间四月天 寂寞断了弦. 回望身后蓝天, 跟再见说再见…… 某天,蒟蒻Autumn发现了从 Gty的妹子树(bzoj3720) 上掉落下来了许多妹子,他发现 她们排成 ...
- 刷题总结——稻草人(bzoj4237cdq分治)
题目: Description JOI村有一片荒地,上面竖着N个稻草人,村民们每年多次在稻草人们的周围举行祭典. 有一次,JOI村的村长听到了稻草人们的启示,计划在荒地中开垦一片田地.和启示中的一样, ...
- 什么是GOP(转)
所谓GOP,意思是画面组,MPEG格中的帧序列,分为I.P.B三种,如排成IBBPBBPBBPBBPBBP...样式,这种连续的帧图片组合即为GOP(画面群,GROUP OF PICTURE),是MP ...
- 转 C语言编译过程简介
C语言编译过程简介 C语言编译过程简介 刚开始接触编程的时候,只知道照书敲敲代码,一直都不知道为什么在windows平台下代码经过鼠标那样点击几下,程序的结果就会在那个黑色的屏幕上.现在找了个机会将C ...
- 在 POSIX 线程编程中避免内存泄漏
检测和避免 POSIX 线程内存泄漏的技巧 POSIX 线程(pthread)编程定义了一套标准的 C 编程语言类型.函数和常量 — 且 pthreads 提供了一种强大的线程管理工具.要充分使用 p ...
- Image与Base64String的互转换
public Image Base64ToImage(string base64String) { // Convert Base64 String to byte[] byte[] imageByt ...
- 编译Caffe(ubuntu-15.10-desktop-amd64,无Cuda)
编译环境 VMWare Workstation 12 Player ubuntu-15.10-desktop-amd64 cpu 4700mq,给vm分配了6个核心+4GB内存+80GB硬盘 编译步骤 ...
- T2821 天使之城 codevs
http://codevs.cn/problem/2821/ 题目描述 Description 天使城有一个火车站,每辆火车都从A方向驶入车站,再从B方向驶出车站. 为了调度火车,火车站设有停放轨道, ...
- luogu P2056 采花
题目描述 萧芸斓是 Z国的公主,平时的一大爱好是采花. 今天天气晴朗,阳光明媚,公主清晨便去了皇宫中新建的花园采花.花园足够大,容纳了 n 朵花,花有 c 种颜色(用整数 1-c 表示) ,且花是排成 ...
- 从源码解析 Spring JDBC 异常抽象
初入学习 JDBC 操作数据库,想必大家都写过下面的代码: 数据库为:H2 如果需要处理特定 SQL 异常,比如 SQL 语句错误,这个时候我们应该怎么办? 查看 SQLException 源码,我们 ...