题意:问树上两点之间的最短距离

解题关键:LCA模板题,在线做法,LCA->RMQ,用st表求解

这里是用first,rmq数组长度可以减半。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<cmath>
#include<iostream>
typedef long long ll;
using namespace std;
const int maxn=;
const int maxm=;
int _pow[maxm],m,n;
int head[maxn],tot;
int ver[maxn*],depth[maxn*],first[maxn],dis[maxn],rmq[maxn*][maxm],id;//5个数组,注意哪个需要乘2 inline int read(){
char k=;char ls;ls=getchar();for(;ls<''||ls>'';k=ls,ls=getchar());
int x=;for(;ls>=''&&ls<='';ls=getchar())x=(x<<)+(x<<)+ls-'';
if(k=='-')x=-x;return x;
} struct edge{
int to,w,nxt;
}e[maxn*];//链式前向星建树 void init(){
memset(head,-,sizeof head);
tot=;
id=;
} void add_edge(int u,int v,int w){
e[tot].to=v;
e[tot].w=w;
e[tot].nxt=head[u];
head[u]=tot++;
} void dfs(int u,int fa,int dep){
ver[++id]=u;//第i个访问到的结点编号
depth[id]=dep;//第i个访问到的结点深度
first[u]=id;
for(int i=head[u];i!=-;i=e[i].nxt){
int v=e[i].to;
int w=e[i].w;
if(v==fa) continue;
dis[v]=dis[u]+w;//dis是先序遍历求
dfs(v,u,dep+);
ver[++id]=u;//后序遍历,再次访问父节点
depth[id]=dep;
}
} void rmq_init(int n){
int k=int(log(n)/log());
for(int i=;i<=n;i++) rmq[i][]=i;
for(int j=;j<=k;j++){
for(int i=;i+_pow[j]-<=n;i++){//因为存的是索引
int a=rmq[i][j-],b=rmq[i+_pow[j-]][j-];
if(depth[a]<depth[b]) rmq[i][j]=a;
else rmq[i][j]=b;
}
}
} int rmq_query(int l,int r){
int k=int(log(r-l+)/log());
int a=rmq[l][k],b=rmq[r-_pow[k]+][k];
if(depth[a]<depth[b]) return a;
else return b;
}//返回的依然是索引 int LCA(int u,int v){
int x=first[u],y=first[v];
if(x>y)swap(x,y);
int res=rmq_query(x,y);
return ver[res];
} int main(){
for(int i=;i<maxm;i++) _pow[i]=<<i; //预处理2^n
int t,a,b,c;
t=read();
while(t--){
init();
n=read();m=read();
for(int i=;i<n-;i++) a=read(),b=read(),c=read(),add_edge(a,b,c),add_edge(b,a,c);
dfs(,-,);
rmq_init(*n-);
for(int i=;i<m;i++){
a=read(),b=read();
int ans=LCA(a,b);
printf("%d\n",dis[a]+dis[b]-*dis[ans]);
}
}
return ;
}

[hdu2586]How far away?(LCA)的更多相关文章

  1. LCA在线算法(hdu2586)

    hdu2586 How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  2. poj1330+hdu2586 LCA离线算法

    整整花了一天学习了LCA,tarjan的离线算法,就切了2个题. 第一题,给一棵树,一次查询,求LCA.2DFS+并查集,利用深度优先的特点,回溯的时候U和U的子孙的LCA是U,U和U的兄弟结点的子孙 ...

  3. LCA 离线的Tarjan算法 poj1330 hdu2586

    LCA问题有好几种做法,用到(tarjan)图拉算法的就有3种.具体可以看邝斌的博客.http://www.cnblogs.com/kuangbin/category/415390.html 几天的学 ...

  4. hdu2586 LCA

    How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  5. HDU2586 How far away ?(LCA模板题)

    题目链接:传送门 题意: 给定一棵树,求两个点之间的距离. 分析: LCA 的模板题目 ans = dis[u]+dis[v] - 2*dis[lca(u,v)]; 在线算法:详细解说 传送门 代码例 ...

  6. hdu2586 lca倍增法

    倍增法加了边的权值,bfs的时候顺便把每个点深度求出来即可 #include<iostream> #include<cstring> #include<cstdio> ...

  7. 模板倍增LCA 求树上两点距离 hdu2586

    http://acm.hdu.edu.cn/showproblem.php?pid=2586 课上给的ppt里的模板是错的,wa了一下午orz.最近总是被坑啊... 题解:树上两点距离转化为到根的距离 ...

  8. hdu2586(LCA最近公共祖先)

    How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  9. hdu2586倍增lca

    求距离 #include<map> #include<set> #include<cmath> #include<queue> #include< ...

随机推荐

  1. Java 学习 day04

    17-数组(概述-内存结构) 概念:同一种类型数据的集合,其实数组就是一个容器. 可以自动给数组中的元素从0开始编号,方便操作这些元素. int[] x = new int[3]; 01-数组(静态初 ...

  2. Times[2017-01-25at JiNan]

    Times[问题描述 ]小 y 作为一名资深的 dotaer,对视野的控制有着深刻的研究.每个单位在一段特定的时间内会出现在小 y 的视野内,除此之外的时间都在小 y 看不到的地方.在小 y 看来,视 ...

  3. 【BZOJ4519】[Cqoi2016]不同的最小割 最小割树

    [BZOJ4519][Cqoi2016]不同的最小割 Description 学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分 ...

  4. Chrome 的滚动条修改.

    该方法针对于win下Chrome任何版本(未测试基于Chrome内核的其他浏览器),Lunix就是目录换了一下 目录是:**\Google\Chrome\User Data\Profile 2\Use ...

  5. 升级pip3的正确姿势

    如果你的电脑里装了两个python,就会有两个pip,一个是pip2,一个是pip3,还有可能出现一个既没有2也没有3的pip,一般情况下,pip等于pip2 有时候我们使用pip安装东西会提示我们p ...

  6. 多线程(一) NSThread

    OS中多线程的实现方案: 技术 语言 线程生命周期 使用频率 pthread C 程序员自行管理 几乎不用 NSthread OC 程序员自行管理 偶尔使用 GCD C 自动管理 经常使用 NSOpe ...

  7. [egret+pomelo]实时游戏杂记(2)

    [egret+pomelo]学习笔记(1) [egret+pomelo]学习笔记(2) [egret+pomelo]学习笔记(3) pomelo pomelo服务端介绍(game-server/con ...

  8. Tomcat部署java项目java.lang.OutOfMemoryError异常解决方法

    java.lang.OutOfMemoryError异常解决方法 Window系统环境下,在catalina.bat文件第一行添加以下内容 set JAVA_OPTS=-Xms512m -Xmx512 ...

  9. android的GPS代码分析JNI如何HAL之间如何设置回调函数【转】

    本文转载自:http://blog.csdn.net/kmesg/article/details/6531577 本文只关注JNI和HAL的接口部分 在jni的android_location_Gps ...

  10. Javascript类型转换的规则实例解析

    http://www.jb51.net/article/79916.htm 类型转换可以分为隐式转换和显式转换,所谓隐式转换即程序在运行时进行的自动转换,显式转换则是人为的对类型进行强制转换.Java ...