Triangle
Time Limit: 3000MS   Memory Limit: 30000K
Total Submissions: 9835   Accepted: 2951

Description

Given n distinct points on a plane, your task is to find the triangle that have the maximum area, whose vertices are from the given points.

Input

The input consists of several test cases. The first line of each test case contains an integer n, indicating the number of points on the plane. Each of the following n lines contains two integer xi and yi, indicating the ith points. The last line of the input is an integer −1, indicating the end of input, which should not be processed. You may assume that 1 <= n <= 50000 and −104 <= xi, yi <= 104 for all i = 1 . . . n.

Output

For each test case, print a line containing the maximum area, which contains two digits after the decimal point. You may assume that there is always an answer which is greater than zero.

Sample Input

3
3 4
2 6
2 7
5
2 6
3 9
2 0
8 0
6 5
-1

Sample Output

0.50
27.00

题意:平面上给定若干点,求由这些点所组成的三角形中面积最大的三角形。
思路:首先肯定要求出这些店的凸包,三角形的三个定点一定在凸包上。之后考虑如何确定出面积最大的三角形。我们首先固定凸包上其中两个点1,2作为三角形的两个顶点,顶点3则不断的在凸包上运动,一开始运动的时候三角形的面积会逐渐变大,直到运动到某一点使三角形面积达到最大值,之后若顶点3继续运动则三角形面积又开始不断减小,
这时3停止运动,顶点1,2换一个组合,重复上述算法求面积最大值。
AC代码:
#define _CRT_SECURE_NO_DEPRECATE
#include<iostream>
#include<algorithm>
#include<vector>
#include<set>
#include<cmath>
using namespace std;
#define EPS 1e-10
#define INF 0x3f3f3f3f
const int N_MAX = +; struct P {
int x, y;
P(){}
P(int x,int y):x(x),y(y) {}
P operator +(P p) {
return P(x+ p.x,y+ p.y);
}
P operator -(P p) {
return P(x -p.x, y -p.y);
}
P operator *(P p) {
return P(x*p.x, y*p.y);
}
bool operator <(const P& p)const {
if (x != p.x)return x < p.x;
else return y < p.y;
}
int dot(P p) {
return x*p.x+y*p.y;
}
int det(P p) {
return x*p.y-y*p.x;
} };
bool cmp_x(const P&p,const P&q) {
if (p.x != q.x)
return p.x < q.x;
return p.y < q.y;
} struct Segment {
P p1, p2;
Segment(P p1=P(),P p2=P()):p1(p1),p2(p2) {}
};
typedef Segment Line;
typedef vector<P>Polygon; inline double cross(P A, P B, P C)
{
return (B - A).det(C - A);
} int triangle_S(Segment s,P p) {
return (s.p2 - s.p1).det(p - s.p1);
} Polygon convex_hull(P * ps,int n) {
sort(ps,ps+n);
int k = ;
Polygon qs(n * );
for (int i = ; i < n;i++) {
while (k > && (qs[k - ] - qs[k - ]).det(ps[i] - qs[k - ]) <= ) k--;
qs[k++] = ps[i];
}
for (int i = n - , t = k; i >= ;i--) {
while (k > t && (qs[k - ] - qs[k - ]).det(ps[i] - qs[k - ]) <= )k--;
qs[k++]=ps[i];
}
qs.resize(k-);
return qs;
} P po[N_MAX];
int N; vector<P> judge_clockwise(vector<P>p) {
for (int i = ; i < p.size()-;i++) {
//double tmp = (p[i + 1] - p[i]).det(p[i + 2] - p[i + 1]);
double tmp = cross(p[i], p[i + ], p[i + ]);
if (tmp > EPS)return p;
else if (tmp < -EPS) {
reverse(p.begin(), p.end());
return p;
}
}
return p;
} void solve(Polygon po,int n) {
int nnext;
int res = ;
for (int offset = ; offset < (n + ) / ;offset++) {//offset为三角形底边两个顶点的跨度
nnext = (offset + ) % n;
for (int i = ; i < n; i++) {
int next = (i + offset) % n;
Segment s = Segment(po[i], po[next]);
int S = triangle_S(s, po[nnext]);
int S_MAX = S;
for (++nnext; nnext != next&&nnext != i;nnext++) {
if (nnext == n)nnext = ;
int S = triangle_S(s,po[nnext]);
res = max(res, S_MAX);
if (S<= S_MAX)break;
S_MAX = S;
}
if (nnext > )nnext--;//!!!!!!!!!!!!!!!!!!!
else nnext = n - ;
}
}
printf("%d.%s\n", res/ , res % == ? "" : "");
} int main() { while (scanf("%d",&N)&&N!=-) {
for (int i = ; i < N;i++) {
scanf("%d%d",&po[i].x,&po[i].y);
}
Polygon Po = convex_hull(po, N);
solve(Po,Po.size());
}
return ;
}

poj 2079 Triangle的更多相关文章

  1. ●POJ 2079 Triangle

    题链: http://poj.org/problem?id=2079 题解: 计算几何,凸包,旋转卡壳 复杂度O(N^2),(O(N)什么的就不说了,我觉得我看过的O(N)方法正确性都有问题,虽然有些 ...

  2. POJ 2079 Triangle (凸包+旋转卡壳)

    [题目链接] http://poj.org/problem?id=2079 [题目大意] 给出一些点,求出能组成的最大面积的三角形 [题解] 最大三角形一定位于凸包上,因此我们先求凸包,再在凸包上计算 ...

  3. poj 2079 Triangle(旋转卡壳)

    Triangle Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 8917   Accepted: 2650 Descript ...

  4. POJ 2079 Triangle [旋转卡壳]

    Triangle Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 9525   Accepted: 2845 Descript ...

  5. POJ 2079 Triangle(凸包+旋转卡壳,求最大三角形面积)

    Triangle Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 7625   Accepted: 2234 Descript ...

  6. poj 2079 Triangle (二维凸包旋转卡壳)

    Triangle Time Limit: 3000MS   Memory Limit: 30000KB   64bit IO Format: %I64d & %I64u Submit Stat ...

  7. poj 2079 Triangle,旋转卡壳求点集的最大三角形

    给出一个点集,求顶点在点集中的最大的三角形面积. 我们知道这三角形的三个点肯定在凸包上,我们求出凸包之后不能枚举,由于题目n比較大,枚举的话要O(n^3)的数量级,所以採用旋转卡壳的做法: 首先枚举三 ...

  8. POJ 2079 Triangle 旋转卡壳求最大三角形

    求点集中面积最大的三角形...显然这个三角形在凸包上... 但是旋转卡壳一般都是一个点卡另一个点...这种要求三角形的情况就要枚举底边的两个点 卡另一个点了... 随着底边点的递增, 最大点显然是在以 ...

  9. hdu 3934&&poj 2079 (凸包+旋转卡壳+求最大三角形面积)

    链接:http://poj.org/problem?id=2079 Triangle Time Limit: 3000MS   Memory Limit: 30000K Total Submissio ...

随机推荐

  1. tcp 高性能服务, netty,mqtt

    1. io 线程不要有比较长的服务. 全部异步化. [1] netty 权威指南上只是说业务复杂时派发到业务线程池种. 共用的线程池最好都轻量. 多层线程池后, 下层的可以进行隔离. 这个是 mqtt ...

  2. css文件和js文件后面带一个问号----2015-1103

    经常看一些网站页面源代码中的css文件和js文件后面带一个问号,后面跟着一连串数字或字符,这是干什么用的? 这个方法我也用过,而且很好用?,它的作用有两个:1.作为版本号,让自己方便记忆.查找:2.作 ...

  3. 探讨 JS 的面向对象中继承的那些事

    最近学了 JS 的面向对象,这篇文章主要是探讨 JS 的面向对象中继承的那些事. JS中继承的特点: 1.子类继承父类: 2.子类可以用父类的方法和属性 3.子类的改变可以不影响父类 下面用一个例子来 ...

  4. new和delete的动态分配。

    c++对象模型 视频的实际操作  note: 1.虚函数有虚指针,所以是4,不管有几个虚函数, 都只有一个vptr来存放调用的虚函数的地址. 2.子类的内存是父类内存的加自己的数据内存. 3.clas ...

  5. shell 练习 - 第七周

    1. 用shell实现传入进程pid, 查看对应进程/proc下CPU.内存指标 #!/bin/bash read -p "Input PID Value: " pid pid_e ...

  6. Python爬虫系列-Urllib库详解

    Urllib库详解 Python内置的Http请求库: * urllib.request 请求模块 * urllib.error 异常处理模块 * urllib.parse url解析模块 * url ...

  7. svn提交报错,提示:locked,需要cleanup

    版权声明:本文为博主原创文章,未经博主允许不得转载. 原文地址: https://www.cnblogs.com/poterliu/p/9285137.html 在使用SVN提交代码或更新代码时经常会 ...

  8. RSA非对称加密算法实现过程

    RSA非对称加密算法实现过程 非对称加密算法有很多,RSA算法就是其中比较出名的算法之一,下面是具体实现过程 <?php /** */ class Rsa { /** * private key ...

  9. linux中怎样关闭ICMP回应功能

    引用自:http://blog.csdn.net/qq844352155/article/details/49700121 linux中怎样关闭ICMP回应功能   输入:   echo 1 > ...

  10. python 面对对象基础

    目录 面向对象基础 面向对象编程(抽象) 类与对象 给对象定制独有的特征 对象的属性查找顺序 类与对象的绑定方法 类与数据类型 对象的高度整合 面向对象基础 面向对象编程(抽象) 回顾一下 面向过程编 ...