poj 2079 Triangle
Time Limit: 3000MS | Memory Limit: 30000K | |
Total Submissions: 9835 | Accepted: 2951 |
Description
Input
Output
Sample Input
3
3 4
2 6
2 7
5
2 6
3 9
2 0
8 0
6 5
-1
Sample Output
0.50
27.00
题意:平面上给定若干点,求由这些点所组成的三角形中面积最大的三角形。
思路:首先肯定要求出这些店的凸包,三角形的三个定点一定在凸包上。之后考虑如何确定出面积最大的三角形。我们首先固定凸包上其中两个点1,2作为三角形的两个顶点,顶点3则不断的在凸包上运动,一开始运动的时候三角形的面积会逐渐变大,直到运动到某一点使三角形面积达到最大值,之后若顶点3继续运动则三角形面积又开始不断减小,
这时3停止运动,顶点1,2换一个组合,重复上述算法求面积最大值。
AC代码:
#define _CRT_SECURE_NO_DEPRECATE
#include<iostream>
#include<algorithm>
#include<vector>
#include<set>
#include<cmath>
using namespace std;
#define EPS 1e-10
#define INF 0x3f3f3f3f
const int N_MAX = +; struct P {
int x, y;
P(){}
P(int x,int y):x(x),y(y) {}
P operator +(P p) {
return P(x+ p.x,y+ p.y);
}
P operator -(P p) {
return P(x -p.x, y -p.y);
}
P operator *(P p) {
return P(x*p.x, y*p.y);
}
bool operator <(const P& p)const {
if (x != p.x)return x < p.x;
else return y < p.y;
}
int dot(P p) {
return x*p.x+y*p.y;
}
int det(P p) {
return x*p.y-y*p.x;
} };
bool cmp_x(const P&p,const P&q) {
if (p.x != q.x)
return p.x < q.x;
return p.y < q.y;
} struct Segment {
P p1, p2;
Segment(P p1=P(),P p2=P()):p1(p1),p2(p2) {}
};
typedef Segment Line;
typedef vector<P>Polygon; inline double cross(P A, P B, P C)
{
return (B - A).det(C - A);
} int triangle_S(Segment s,P p) {
return (s.p2 - s.p1).det(p - s.p1);
} Polygon convex_hull(P * ps,int n) {
sort(ps,ps+n);
int k = ;
Polygon qs(n * );
for (int i = ; i < n;i++) {
while (k > && (qs[k - ] - qs[k - ]).det(ps[i] - qs[k - ]) <= ) k--;
qs[k++] = ps[i];
}
for (int i = n - , t = k; i >= ;i--) {
while (k > t && (qs[k - ] - qs[k - ]).det(ps[i] - qs[k - ]) <= )k--;
qs[k++]=ps[i];
}
qs.resize(k-);
return qs;
} P po[N_MAX];
int N; vector<P> judge_clockwise(vector<P>p) {
for (int i = ; i < p.size()-;i++) {
//double tmp = (p[i + 1] - p[i]).det(p[i + 2] - p[i + 1]);
double tmp = cross(p[i], p[i + ], p[i + ]);
if (tmp > EPS)return p;
else if (tmp < -EPS) {
reverse(p.begin(), p.end());
return p;
}
}
return p;
} void solve(Polygon po,int n) {
int nnext;
int res = ;
for (int offset = ; offset < (n + ) / ;offset++) {//offset为三角形底边两个顶点的跨度
nnext = (offset + ) % n;
for (int i = ; i < n; i++) {
int next = (i + offset) % n;
Segment s = Segment(po[i], po[next]);
int S = triangle_S(s, po[nnext]);
int S_MAX = S;
for (++nnext; nnext != next&&nnext != i;nnext++) {
if (nnext == n)nnext = ;
int S = triangle_S(s,po[nnext]);
res = max(res, S_MAX);
if (S<= S_MAX)break;
S_MAX = S;
}
if (nnext > )nnext--;//!!!!!!!!!!!!!!!!!!!
else nnext = n - ;
}
}
printf("%d.%s\n", res/ , res % == ? "" : "");
} int main() { while (scanf("%d",&N)&&N!=-) {
for (int i = ; i < N;i++) {
scanf("%d%d",&po[i].x,&po[i].y);
}
Polygon Po = convex_hull(po, N);
solve(Po,Po.size());
}
return ;
}
poj 2079 Triangle的更多相关文章
- ●POJ 2079 Triangle
题链: http://poj.org/problem?id=2079 题解: 计算几何,凸包,旋转卡壳 复杂度O(N^2),(O(N)什么的就不说了,我觉得我看过的O(N)方法正确性都有问题,虽然有些 ...
- POJ 2079 Triangle (凸包+旋转卡壳)
[题目链接] http://poj.org/problem?id=2079 [题目大意] 给出一些点,求出能组成的最大面积的三角形 [题解] 最大三角形一定位于凸包上,因此我们先求凸包,再在凸包上计算 ...
- poj 2079 Triangle(旋转卡壳)
Triangle Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 8917 Accepted: 2650 Descript ...
- POJ 2079 Triangle [旋转卡壳]
Triangle Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 9525 Accepted: 2845 Descript ...
- POJ 2079 Triangle(凸包+旋转卡壳,求最大三角形面积)
Triangle Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 7625 Accepted: 2234 Descript ...
- poj 2079 Triangle (二维凸包旋转卡壳)
Triangle Time Limit: 3000MS Memory Limit: 30000KB 64bit IO Format: %I64d & %I64u Submit Stat ...
- poj 2079 Triangle,旋转卡壳求点集的最大三角形
给出一个点集,求顶点在点集中的最大的三角形面积. 我们知道这三角形的三个点肯定在凸包上,我们求出凸包之后不能枚举,由于题目n比較大,枚举的话要O(n^3)的数量级,所以採用旋转卡壳的做法: 首先枚举三 ...
- POJ 2079 Triangle 旋转卡壳求最大三角形
求点集中面积最大的三角形...显然这个三角形在凸包上... 但是旋转卡壳一般都是一个点卡另一个点...这种要求三角形的情况就要枚举底边的两个点 卡另一个点了... 随着底边点的递增, 最大点显然是在以 ...
- hdu 3934&&poj 2079 (凸包+旋转卡壳+求最大三角形面积)
链接:http://poj.org/problem?id=2079 Triangle Time Limit: 3000MS Memory Limit: 30000K Total Submissio ...
随机推荐
- Android驱动开发读书笔记五
第五章 本章介绍了S3C6410开发板的功能,开发板的不同主要是在烧录嵌入式系统的方式不同,以及如何在此开发板上安装Android. 1.安装串口调试工具minicom 首先需要一根USB转串口线,由 ...
- Linux - 链接概念详解
1> Linux链接概念Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link).默认情况下,ln命令产生硬链接. [硬连接]硬连接指通过 ...
- PHP 代码优化建议
1.尽量静态化: 如果一个方法能被静态,那就声明它为静态的,速度可提高1/4,甚至我测试的时候,这个提高了近三倍.当然了,这个测试方法需要在十万级以上次执行,效果才明显.其实静态方法和非静态方法的效率 ...
- 【windows】win7 sp1 系统语言中英文切换
注:Windows 7 Ultimate and Windows 7 Enterprise (旗舰版和企业版) 可以直接在控制面板/地区和语言中修改显示语言,其他系统不行 进入网站下载相关的MUI包安 ...
- 下载旧版本的JDK
下载旧版本的JDK 有的时候我们需要去下载旧版本的JDK,但是进入Oracle官网,显示的总是新版的JDK,这里告诉大家怎么样去下载旧版本的JDK. 首先去JavaSE的 下载界面 拉到最下面,找到这 ...
- 初学Python02
数据类型和变量: 1.整数 整数在Python中直接输入就好,没有特殊要求(正负整数皆可).由于计算机是二进制的,有时候会使用十六进制表示数字,0X+0-9或者a-f来表示. 2.浮点数 浮点数 ...
- 【草稿】JS中如何操作时间
如何声明时间变量 如何设置时间变量的时.分.秒.毫秒 如何根据字符串变量,声明指定的时间变量 如何比较两个时间变量 代码如下: $(function () { var d = new Date(); ...
- jsp页面上传多个name值到后台
平常利用表单提交的一般都是一个文本框对应一个name,而在后台都是利用request.getParameter(String name);这段代码返回的是一个String类型的参数:而当我们页面上有多 ...
- JAVA里的别名机制
别名现象主要出现在赋值的问题上: 对基本数据类型的赋值是很简单的.基本数据类型存储了实际的数值,而并非指向一个对象的引用,所以在为其赋值的时候,是直接将一个地方的内容复制到了另一个地方.例如,对基本数 ...
- HDU 3639 SCC Hawk-and-Chicken
求SCC缩点,统计出每个SCC中的点的个数. 然后统计能到达u的最多的点的个数,可以反向建图,再dfs一遍统计出来. 最后说一下,有必要开一个标记数组,因为测试数据中有重边,结果无限WA. #incl ...