3.1 Describe how you could use a single array to implement three stacks.

Flexible Divisions的方案,当某个栈满了之后,需要把相邻的栈调整好,这是一个递归的过程。

每个stack有一些属性,所以不妨将每个stack封闭起来,我这里是用一个private的struct来实现,方便,同时对外部又不可见。

对于一些常用的操作,比如环形数组取下一个数,前一个数,都可以封装起来。

 class XNStack {
public:
XNStack(int n, int capacity) : stackTotal(n), capacity(capacity), total() {
buff = new int[capacity];
stacks = new XStackData[n];
for (int i = ; i < n; ++i) {
stacks[i].top = i * capacity / n;
stacks[i].capacity = capacity / n;
stacks[i].size = ;
}
if (capacity % n) stacks[n - ].capacity++;
} ~XNStack() {
delete[] buff;
delete[] stacks;
} void push(int stackNum, int v) {
cout << "push " << stackNum << " " << v << endl;
if (total >= capacity) {
cout << "full" << endl;
return; // full
}
total++;
if (stacks[stackNum].size < stacks[stackNum].capacity) {
buff[stacks[stackNum].top] = v;
stacks[stackNum].top = next(stacks[stackNum].top);
stacks[stackNum].size++;
} else {
int n = stackNum + ;
if (n >= stackTotal) n = ;
shift(n);
buff[stacks[stackNum].top] = v;
stacks[stackNum].top = next(stacks[stackNum].top);
stacks[stackNum].size++;
stacks[stackNum].capacity++;
}
} void pop(int stackNum) {
cout << "pop " << stackNum << endl;
if (stacks[stackNum].size < ) {
cout << "empty" << endl;
return;
}
total--;
stacks[stackNum].size--;
stacks[stackNum].top = pre(stacks[stackNum].top);
} int top(int stackNum) {
return buff[pre(stacks[stackNum].top)];
} bool empty(int stackNum) const {
return stacks[stackNum].size == ;
} void print() {
for (int i = ; i < stackTotal; ++i) {
cout << "stack[" << i << "]: size[" << stacks[i].size << "] capacity[" << stacks[i].capacity << "] top[" << stacks[i].top << "]" << endl;
} for (int i = ; i < capacity; ++i) {
cout << buff[i] << " ";
}
cout << endl;
} private:
struct XStackData {
int top;
int capacity;
int size;
}; int next(int i) {
i++;
if (i >= capacity) i = ;
return i;
} int pre(int i) {
i--;
if (i < ) i = capacity - ;
return i;
} void shift(int stackNum) {
if (stacks[stackNum].size >= stacks[stackNum].capacity) {
int next = stackNum + ;
if (next >= stackTotal) next = ;
shift(next);
} else {
stacks[stackNum].capacity--; //最后一个移动的区间要把capacity减1,因为移动的空间就是由它来的
}
int j = stacks[stackNum].top;
for (int i = ; i < stacks[stackNum].capacity; ++i) {
int p = pre(j);
buff[j] = buff[p];
j = p;
}
stacks[stackNum].top = next(stacks[stackNum].top);
}
int *buff;
XStackData *stacks;
int capacity;
int total;
int stackTotal;
};

3.2 How would you design a stack which, in addition to push and pop, also has a function min which returns the minimum element? Push, pop and min should all operate in 0(1) time.

两个栈。

3.3 Imagine a (literal) stack of plates. If the stack gets too high, it migh t topple. Therefore, in real life, we would likely start a new stack when the previous stack exceeds some threshold. Implement a data structure SetOfStacks that mimics this. SetOfStacks should be composed of several stacks and should create a new stack once the previous one exceeds capacity. SetOfStacks.push() and SetOfStacks.pop () should behave identically to a single stack (that is, pop () should return the same values as it would if there were just a single stack).
FOLLOW UP
Implement a function popAt(int index) which performs a pop operation on a specific sub-stack.

把3.1 改一改就好了。这样在实现确保每个stack是full就比较简单了,只需要修改top指针,不需要真正地搬动。当然careercup里面的解法也是对的。

3.4 In the classic problem of the Towers of Hanoi, you have 3 towers and N disks of different sizes which can slide onto any tower. The puzzle starts with disks sorted in ascending order of size from top to bottom (i.e., each disk sits on top of an even larger one). You have the following constraints:
(T) Only one disk can be moved at a time.
(2) A disk is slid off the top of one tower onto the next rod.
(3) A disk can only be placed on top of a larger disk.
Write a program to move the disks from the first tower to the last using Stacks.

汉诺塔。经典递归问题。

3.5 Implement a MyQueue class which implements a queue using two stacks.

两个栈,一个用来进队列,一个用来出队列。

3.6 Write a program to sort a stack in ascending order (with biggest items on top). You may use at most one additional stack to hold items, but you may not copy the elements into any other data structure (such as an array). The stack supports the following operations: push, pop, peek, and isEmpty.

插入排序。使得缓存栈是从栈顶到栈底递增,最后再把缓存栈的东西倒到原来的栈中。注意代码重构。

3.7 An animal shelter holds only dogs and cats, and operates on a strictly "first in, first out" basis. People must adopt either the "oldest" (based on arrival time) of all animals at the shelter, or they can select whether they would prefer a dog or a cat (and will receive the oldest animal of that type). They cannot select which specific animal they would like. Create the data structures to maintain this system and implement operations such as enqueue, dequeueAny, dequeueDog and dequeueCat. You may use the built-in L inkedL ist data structure.

感觉career cup的题虽然简单些,但是可以检查你的代码简洁功力,还有OO design的功力。

纯虚的析构函数是需要一个实现体的,不然通不过编译,link error。

设计方面,animal必须是抽象类,dog和cat是它的子类。

 class XStack {
public:
XStack(int capacity):capacity(capacity), t() {
buff = new int[capacity];
} ~XStack() {
delete[] buff;
} void push(int v) {
if (t >= capacity) return;
buff[t++] = v;
} void pop() {
if (t <= ) return;
t--;
} int top() {
if (t == ) return ;
return buff[t - ];
} int size() const {
return t;
} bool empty() const {
return t == ;
} void print() const {
for (int i = ; i < t; ++i) {
cout << buff[i] << " ";
}
cout << endl;
}
private:
int *buff;
int capacity;
int t;
}; // 3.2
class XMinStack: public XStack {
public: XMinStack(int capacity):XStack(capacity), minStack(capacity) {} // should have a constructor void push(int v) {
XStack::push(v); // call the superclass method
if (empty() || v < minStack.top()) {
minStack.push(v);
}
} void pop() {
if (!empty() && !minStack.empty() && top() == minStack.top()) {
minStack.pop();
}
XStack::pop();
} int min() {
if (minStack.empty()) return ;
return minStack.top();
}
private:
XStack minStack;
}; // 3.4
class Tower : public XStack {
public:
Tower():XStack() {} // constructor!!
}; // 3.4 move 1...n from t1 to t3, t2 is cache
void moveDisk(int n, Tower &t1, Tower &t2, Tower &t3) {
if (n <= ) return;
moveDisk(n - , t1, t3, t2); // t2 is destination here
t3.push(t1.top());
t1.pop();
moveDisk(n - , t2, t1, t3); // t2 is origin here
} class XQueue {
public:
XQueue(int capacity):in(capacity), out(capacity) {
} void enqueue(int v) {
in.push(v);
} int dequeue() {
int v = front();
out.pop();
return v;
} int front() {
if (out.empty()) {
while (!in.empty()) {
out.push(in.top());
in.pop();
}
}
int v = out.top();
return v;
}
private:
XStack in;
XStack out;
}; // 3.6, insertion sort
void sort(XStack &st) {
XStack tmp(st.size());
while (!st.empty()) {
/*if (tmp.empty() || st.top() <= tmp.top()) { // this part is not necessary
tmp.push(st.top());
st.pop();
} else { */
int t = st.top();
st.pop();
while (!tmp.empty() && tmp.top() < t) {
st.push(tmp.top());
tmp.pop();
}
tmp.push(t);
//}
} while (!tmp.empty()) {
st.push(tmp.top());
tmp.pop();
}
} // 3.7
class Animal { // abstract class
public:
Animal(int type):type(type) {}
virtual ~Animal() = ; // pure virtual
int getOrder() const { return order; }
void setOrder(int order) {this->order = order;}
int getType() const { return type; }
enum {CAT = , DOG = };
private:
int order;
int type;
}; Animal::~Animal() {} // !!!! without this, link error occur class Dog : public Animal {
public:
Dog():Animal(Animal::DOG) {}
~Dog() {}
}; class Cat : public Animal {
public:
Cat():Animal(Animal::CAT) {}
~Cat() {}
}; class AnimalQueue {
public:
AnimalQueue():order() {} void enqueue(Animal* a) {
a->setOrder(order++);
if (a->getType() == Animal::CAT) cats.push_back((Cat*)a);
else if (a->getType() == Animal::DOG) dogs.push_back((Dog*)a);
} Animal* dequeueAny() {
Animal* cat = cats.empty() ? NULL : cats.front(); //when empty
Animal* dog = dogs.empty() ? NULL : dogs.front(); if (dog == NULL || (cat != NULL && cat->getOrder() < dog->getOrder())) {
cats.pop_front();
return cat;
} else {
dogs.pop_front();
return dog;
}
} Dog* dequeueDog() {
if (dogs.empty()) return NULL;
Dog* dog = dogs.front();
dogs.pop_front();
return dog;
} Cat* dequeueCat() {
if (cats.empty()) return NULL;
Cat* cat = cats.front();
cats.pop_front();
return cat;
} bool empty() const {
return cats.empty() && dogs.empty();
}
private:
int order;
list<Cat*> cats;
list<Dog*> dogs;
};

Careercup | Chapter 3的更多相关文章

  1. Careercup | Chapter 1

    1.1 Implement an algorithm to determine if a string has all unique characters. What if you cannot us ...

  2. Careercup | Chapter 2

    链表的题里面,快慢指针.双指针用得很多. 2.1 Write code to remove duplicates from an unsorted linked list.FOLLOW UPHow w ...

  3. Careercup | Chapter 8

    8.2 Imagine you have a call center with three levels of employees: respondent, manager, and director ...

  4. Careercup | Chapter 7

    7.4 Write methods to implement the multiply, subtract, and divide operations for integers. Use only ...

  5. CareerCup Chapter 9 Sorting and Searching

    9.1 You are given two sorted arrays, A and B, and A has a large enough buffer at the end to hold B. ...

  6. CareerCup chapter 1 Arrays and Strings

    1.Implement an algorithm to determine if a string has all unique characters What if you can not use ...

  7. CareerCup Chapter 4 Trees and Graphs

    struct TreeNode{ int val; TreeNode* left; TreeNode* right; TreeNode(int val):val(val),left(NULL),rig ...

  8. Careercup | Chapter 6

    6.2 There is an 8x8 chess board in which two diagonally opposite corners have been cut off. You are ...

  9. Careercup | Chapter 5

    5.1 You are given two 32-bit numbers, N andM, and two bit positions, i and j. Write a method to inse ...

随机推荐

  1. golang 函数的特殊用法

    1.可以复用一些写法.经常在单元测试过程中需要new一些对象可以new的操作抽离出来 package main import "fmt" type S struct { } fun ...

  2. TextView设置缩略显示

    1.代码设置 textview.setSingleLine(); textview.setEllipsiz(TextUtils.TruncateAt.valueOf("END")) ...

  3. Go语言学习03

    Go语言-数组类型 一个数组(Array)就是一个可以容纳若干类型相同的元素的容器.这个容器的大小(即数组的长度)是固定的,且是体现在数组的类型字面量之中的.比如,我们声明了一个数组类型: type ...

  4. Freemarker的循环通过assign指令引入计数变量

    这里是一个jeecms框架的前台的一个内容列表集,因为不是每个内容子项符合要求,而且需要统计符合要求的子项个数,仿照java的for循环,需要在循环前声明一个计数变量,这就需要使用Freemaker的 ...

  5. web安全测试---跨站点脚本测试

    1.1      跨站脚本测试 1.1.1        GET方式跨站脚本测试 编号 SEC_Web_XSS_01 测试用例名称 GET方式跨站脚本测试 测试目的 由于跨站脚本会导致会话被劫持.敏感 ...

  6. 再谈H2的MVStore与MVMap

    对H2的[MVStore]: http://www.cnblogs.com/simoncook/p/5188105.html 这篇文章的补充. 概述 我们通常用的map,比如HashMap Linke ...

  7. Wannafly挑战赛6

    完全平方数 时间限制:C/C++ 1秒,其他语言2秒空间限制:C/C++ 131072K,其他语言262144K64bit IO Format: %lld 题目描述 多次查询[l,r]范围内的完全平方 ...

  8. c++中vector容器的功能及应用。

    vector基本操作:  1.头文件 #include<vector>. 注:一定要加上using namespace std;  2.vector对象的创建: vector<int ...

  9. Bootstrap-table custome-ajax用法

    <div id="toolbar"> <div class="form-inline" role="form"> & ...

  10. hihoCoder #1161 八卦的小冰

    题目大意 考虑一个由 $n$ 个人构成的社交网络,其中任意两人都有一个用非负整数表示的亲密度. 初始时给出 $m$ 对人的亲密度,其余的亲密度为 $0$ . 定义此社交网络的「八卦度」为异性之间的亲密 ...