原题链接:http://poj.org/problem?id=1860

Currency Exchange
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 23055   Accepted: 8328

Description

Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency. 
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. 
You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively. 
Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. 

Input

The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=103
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2<=rate<=102, 0<=commission<=102
Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 104

Output

If Nick can increase his wealth, output YES, in other case output NO to the output file.

Sample Input

3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00

Sample Output

YES

Source

Northeastern Europe 2001, Northern Subregion

题意

给你多种货币之间的兑换关系,现在你有若干某种货币,问你是否能够通过不断兑换,使得你的这种货币变多。

题解

如果存在某个环,使得你在这个环上跑一圈钱变多了,并且这个环可以由起点到达,那么你就可以在这个环上一直跑,知道钱变得无穷大,然后再回到起点,那么此时你的钱就肯定变多了。所以问题就转换为了,在这个图上是否存在这样的环,我们发现,这和负环的性质十分相似。那么可以得出以下算法,通过spfa遍历图,每次从队首取出元素去松弛各个节点的当前值,这里的松弛和最短路相反,定义松弛成功为当前值变大。如果松弛成功且节点没在队中,那么入队。如果某个节点入队的次数大于n,那么这个节点一定是某个钱变多的环上的节点。

代码

#include<iostream>
#include<cstring>
#include<vector>
#include<string>
#include<queue>
#include<algorithm>
#define MAX_N 123
using namespace std; struct edge {
public:
int to;
double r, c; edge(int t, double rr, double cc) : to(t), r(rr), c(cc) { } edge() { }
}; vector<edge> G[MAX_N];
int N,M,S;
double V; queue<int> que;
bool inQue[MAX_N];
double d[MAX_N];
int cnt[MAX_N]; bool spfa() {
que.push(S);
inQue[S] = ;
d[S] = V;
cnt[S]++;
while (que.size()) {
int u = que.front();
que.pop();
inQue[u] = ;
for (int i = ; i < G[u].size(); i++) {
int v = G[u][i].to;
double r = G[u][i].r, c = G[u][i].c;
if ((d[u] - c) * r > d[v]) {
d[v] = (d[u] - c) * r;
if (!inQue[v]) {
que.push(v);
inQue[v] = ;
cnt[v]++;
if (cnt[v] > N)return true;
}
}
}
}
return false;
} int main() {
cin.sync_with_stdio(false);
cin >> N >> M >> S >> V;
for (int i = ; i < M; i++) {
int u, v;
double r, c;
cin >> u >> v >> r >> c;
G[u].push_back(edge(v, r, c));
cin >> r >> c;
G[v].push_back(edge(u, r, c));
}
if (spfa())cout << "YES" << endl;
else cout << "NO" << endl; return ;
}

POJ 1860 Currency Exchange 最短路+负环的更多相关文章

  1. poj - 1860 Currency Exchange Bellman-Ford 判断正环

    Currency Exchange POJ - 1860 题意: 有许多货币兑换点,每个兑换点仅支持两种货币的兑换,兑换有相应的汇率和手续费.你有s这个货币 V 个,问是否能通过合理地兑换货币,使得你 ...

  2. POJ 1860 Currency Exchange (最短路)

    Currency Exchange Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u S ...

  3. POJ 1860 Currency Exchange【SPFA判环】

    Several currency exchange points are working in our city. Let us suppose that each point specializes ...

  4. poj 1860 Currency Exchange (最短路bellman_ford思想找正权环 最长路)

    感觉最短路好神奇呀,刚开始我都 没想到用最短路 题目:http://poj.org/problem?id=1860 题意:有多种从a到b的汇率,在你汇钱的过程中还需要支付手续费,那么你所得的钱是 mo ...

  5. POJ 1860 Currency Exchange 最短路 难度:0

    http://poj.org/problem?id=1860 #include <cstdio> //#include <queue> //#include <deque ...

  6. 最短路(Bellman_Ford) POJ 1860 Currency Exchange

    题目传送门 /* 最短路(Bellman_Ford):求负环的思路,但是反过来用,即找正环 详细解释:http://blog.csdn.net/lyy289065406/article/details ...

  7. POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环)

    POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环) Description Several currency ...

  8. POJ 1860 Currency Exchange + 2240 Arbitrage + 3259 Wormholes 解题报告

    三道题都是考察最短路算法的判环.其中1860和2240判断正环,3259判断负环. 难度都不大,可以使用Bellman-ford算法,或者SPFA算法.也有用弗洛伊德算法的,笔者还不会SF-_-…… ...

  9. POJ 1860——Currency Exchange——————【最短路、SPFA判正环】

    Currency Exchange Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u S ...

随机推荐

  1. Yii2.0学习--目录结构

    目录结构: 创建一个控制器: <?php /** * Created by Haima. * Author:Haima * QQ:228654416 * Date: 2018/8/23 * Ti ...

  2. leetcode-6-basic

    解题思路: 这道题真实地反映了我今晚有多脑残=.=只需要从根号N开始向前找,第一个能被N整除的数就是width,然后存到结果就 可以了.因为离根号N越近,width越大,与length的差越小. ve ...

  3. LeetCode(117) Populating Next Right Pointers in Each Node II

    题目 Follow up for problem "Populating Next Right Pointers in Each Node". What if the given ...

  4. Leetcode 81. 搜索旋转排序数组 II

    题目链接 https://leetcode-cn.com/problems/search-in-rotated-sorted-array-ii/description/ 题目描述 假设按照升序排序的数 ...

  5. IAR调试时出现IAR one or more breakpoints could not be set and have been disabled的解决办法

    问题:在IAR调试时,单步执行的时候绿色箭头一直指向汇编界面,不指向C语言界面,并且不能在C语言界面设置断点,以及在代码编辑界面,设置断点,点调试时总提示IAR one or more breakpo ...

  6. Makefile基础(二)

    上一章:C语言之Makefile基础(一) 上一章的Makefile写的中规中矩,比较繁琐,是为了讲清楚基本概念,其实Makefile有很多灵活的写法,可以写的更简洁,同时减少出错的可能 一个目标依赖 ...

  7. 以http server为例简要分析netty3实现

    概要 最近看了点netty3实现.从webbit项目作为口子.webbit项目是一个基于netty3做的http与websocket server.后面还会继续看下netty4,netty4有很多改进 ...

  8. webdriver高级应用- 启动带有用户配置信息的firefox浏览器窗口

    由于WebDriver启动FireFox浏览器时会启用全新的FireFox浏览器窗口,导致当前机器的FireFox浏览器已经配置的信息在测试中均无法生效,例如已经安装的浏览器插件.个人收藏夹等.为了解 ...

  9. 大数据学习——scala函数与方法

    package com /** * Created by Administrator on 2019/4/8. */ object TestMap { def ttt(f: Int => Int ...

  10. python正则re模块

    今日内容: 知识点一:正则 什么是正则:  就是用一系列具有特殊含义的字符组成一套规则,改规则用来描述具有某一特征的字符串  正则就是用来在一个大的字符串中取出符合规则的小字符串   为什么用正则:  ...