POJ 1860 Currency Exchange 最短路+负环
原题链接:http://poj.org/problem?id=1860
|
Currency Exchange
Description Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency.
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively. Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. Input The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=103.
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2<=rate<=102, 0<=commission<=102. Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 104. Output If Nick can increase his wealth, output YES, in other case output NO to the output file.
Sample Input 3 2 1 20.0 Sample Output YES Source Northeastern Europe 2001, Northern Subregion
|
题意
给你多种货币之间的兑换关系,现在你有若干某种货币,问你是否能够通过不断兑换,使得你的这种货币变多。
题解
如果存在某个环,使得你在这个环上跑一圈钱变多了,并且这个环可以由起点到达,那么你就可以在这个环上一直跑,知道钱变得无穷大,然后再回到起点,那么此时你的钱就肯定变多了。所以问题就转换为了,在这个图上是否存在这样的环,我们发现,这和负环的性质十分相似。那么可以得出以下算法,通过spfa遍历图,每次从队首取出元素去松弛各个节点的当前值,这里的松弛和最短路相反,定义松弛成功为当前值变大。如果松弛成功且节点没在队中,那么入队。如果某个节点入队的次数大于n,那么这个节点一定是某个钱变多的环上的节点。
代码
#include<iostream>
#include<cstring>
#include<vector>
#include<string>
#include<queue>
#include<algorithm>
#define MAX_N 123
using namespace std; struct edge {
public:
int to;
double r, c; edge(int t, double rr, double cc) : to(t), r(rr), c(cc) { } edge() { }
}; vector<edge> G[MAX_N];
int N,M,S;
double V; queue<int> que;
bool inQue[MAX_N];
double d[MAX_N];
int cnt[MAX_N]; bool spfa() {
que.push(S);
inQue[S] = ;
d[S] = V;
cnt[S]++;
while (que.size()) {
int u = que.front();
que.pop();
inQue[u] = ;
for (int i = ; i < G[u].size(); i++) {
int v = G[u][i].to;
double r = G[u][i].r, c = G[u][i].c;
if ((d[u] - c) * r > d[v]) {
d[v] = (d[u] - c) * r;
if (!inQue[v]) {
que.push(v);
inQue[v] = ;
cnt[v]++;
if (cnt[v] > N)return true;
}
}
}
}
return false;
} int main() {
cin.sync_with_stdio(false);
cin >> N >> M >> S >> V;
for (int i = ; i < M; i++) {
int u, v;
double r, c;
cin >> u >> v >> r >> c;
G[u].push_back(edge(v, r, c));
cin >> r >> c;
G[v].push_back(edge(u, r, c));
}
if (spfa())cout << "YES" << endl;
else cout << "NO" << endl; return ;
}
POJ 1860 Currency Exchange 最短路+负环的更多相关文章
- poj - 1860 Currency Exchange Bellman-Ford 判断正环
Currency Exchange POJ - 1860 题意: 有许多货币兑换点,每个兑换点仅支持两种货币的兑换,兑换有相应的汇率和手续费.你有s这个货币 V 个,问是否能通过合理地兑换货币,使得你 ...
- POJ 1860 Currency Exchange (最短路)
Currency Exchange Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u S ...
- POJ 1860 Currency Exchange【SPFA判环】
Several currency exchange points are working in our city. Let us suppose that each point specializes ...
- poj 1860 Currency Exchange (最短路bellman_ford思想找正权环 最长路)
感觉最短路好神奇呀,刚开始我都 没想到用最短路 题目:http://poj.org/problem?id=1860 题意:有多种从a到b的汇率,在你汇钱的过程中还需要支付手续费,那么你所得的钱是 mo ...
- POJ 1860 Currency Exchange 最短路 难度:0
http://poj.org/problem?id=1860 #include <cstdio> //#include <queue> //#include <deque ...
- 最短路(Bellman_Ford) POJ 1860 Currency Exchange
题目传送门 /* 最短路(Bellman_Ford):求负环的思路,但是反过来用,即找正环 详细解释:http://blog.csdn.net/lyy289065406/article/details ...
- POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环)
POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环) Description Several currency ...
- POJ 1860 Currency Exchange + 2240 Arbitrage + 3259 Wormholes 解题报告
三道题都是考察最短路算法的判环.其中1860和2240判断正环,3259判断负环. 难度都不大,可以使用Bellman-ford算法,或者SPFA算法.也有用弗洛伊德算法的,笔者还不会SF-_-…… ...
- POJ 1860——Currency Exchange——————【最短路、SPFA判正环】
Currency Exchange Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u S ...
随机推荐
- Django 惰性机制
惰性机制:Publisher.objects.all()或者.filter()等都只是返回了一个QuerySet(查询结果集对象),它并不会马上执行sql,而是当调用QuerySet的时候才执行sql ...
- perl-tips-1
.pm 应该保存 Perl Module,也就是 Perl 模块.例如 Socket.pm.pl 应该保存 Perl Library,也就是 Perl 库文件.例如 perldb.pl.plx 应该保 ...
- LeetCode(292) Nim Game
题目 You are playing the following Nim Game with your friend: There is a heap of stones on the table, ...
- hdu-1231 连续最大子序列(动态规划)
Time limit1000 ms Memory limit32768 kB 给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj ...
- PAT Basic 1074
1074 宇宙无敌加法器 地球人习惯使用十进制数,并且默认一个数字的每一位都是十进制的.而在 PAT 星人开挂的世界里,每个数字的每一位都是不同进制的,这种神奇的数字称为“PAT数”.每个 PAT 星 ...
- 虚拟机上的Linux学习
title: 虚拟机上的Linux学习 date: 2018-08-08 15:48:28 updated: tags: [Linux,学习笔记] description: keywords: com ...
- webdriver高级应用- 右键另存为下载文件
1.要使用右键另存,需要先按照第三方工具AutoIt: 链接: https://pan.baidu.com/s/12aBBhOOTmyQpH9hukt0XGA 密码: fcdk 2.创建一个名为loa ...
- python学习-- Django传递数据给JS
var List = {{ List|safe }};//safe 必须存在
- 九度oj 题目1466:排列与二进制
题目描述: 在组合数学中,我们学过排列数.从n个不同元素中取出m(m<=n)个元素的所有排列的个数,叫做从n中取m的排列数,记为p(n, m).具体计算方法为p(n, m)=n(n-1)(n-2 ...
- js只能输入汉字
var reg = new RegExp("[\\u4E00-\\u9FFF]+","g"); if(reg.test(val)){ al ...