Gym - 101667H

2017-2018 ACM-ICPC, Asia Daejeon Regional Contest

#include<bits/stdc++.h>
using namespace std;
#define maxn 4000005
const double pi=acos(-1.0);
struct com
{
double x,y;
com(double X=,double Y=)
{
x=X,y=Y;
}
}a[maxn],b[maxn];
com operator + (com a,com b) {return com(a.x+b.x,a.y+b.y);}
com operator - (com a,com b) {return com(a.x-b.x,a.y-b.y);}
com operator * (com a,com b) {return com(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
int S,T,n,m,L,R[maxn],ans[maxn];
long long F[maxn];
char s[maxn],t[maxn];
double f[maxn],g[maxn];
void FFT(com a[maxn],int opt)
{
for (int i=;i<n;++i)
if (i<R[i]) swap(a[i],a[R[i]]);
for (int k=;k<n;k<<=)
{
com wn=com(cos(pi/k),opt*sin(pi/k));
for (int i=;i<n;i+=(k<<))
{
com w=com(,);
for (int j=;j<k;++j,w=w*wn)
{
com x=a[i+j],y=w*a[i+j+k];
a[i+j]=x+y,a[i+j+k]=x-y;
}
}
}
}
void calc(int opt)
{
FFT(a,);FFT(b,);
for (int i=;i<=n;++i) a[i]=a[i]*b[i];
FFT(a,-);
for (int i=S-;i<T;++i)
{
F[i]+=(long long)(a[i].x/n+0.5)*opt;//对于每种匹配位置累计赢的次数
}
}
int main()
{
scanf("%d%d",&T,&S);
scanf("%s%s",t,s);//S短,T长
for(int i=;i<S/;++i) swap(s[i],s[S-i-]);//短串逆置
T=T+S;
for(int i=T-S;i<T;i++)t[i]='B';
t[T]=;
m=S+T-;
for(int i=;i<T;i++)
{
if(t[i]=='S')t[i]='R';
else if(t[i]=='R')t[i]='P';
else if(t[i]=='P')t[i]='S';
}
for (n=;n<=m;n<<=) ++L;
for (int i=;i<n;++i)
R[i]=(R[i>>]>>)|((i&)<<(L-));
for (int i=;i<T;++i) f[i]=(t[i]=='S');
for (int i=;i<S;++i) g[i]=(s[i]=='S');
for (int i=;i<=n;++i) a[i]=com(,),b[i]=com(,);
for (int i=;i<T;++i) a[i].x=f[i];
for (int i=;i<S;++i) b[i].x=g[i];
calc();
for (int i=;i<T;++i) f[i]=(t[i]=='R');
for (int i=;i<S;++i) g[i]=(s[i]=='R');
for (int i=;i<=n;++i) a[i]=com(,),b[i]=com(,);
for (int i=;i<T;++i) a[i].x=f[i];
for (int i=;i<S;++i) b[i].x=g[i];
calc();
for (int i=;i<T;++i) f[i]=(t[i]=='P');
for (int i=;i<S;++i) g[i]=(s[i]=='P');
for (int i=;i<=n;++i) a[i]=com(,),b[i]=com(,);
for (int i=;i<T;++i) a[i].x=f[i];
for (int i=;i<S;++i) b[i].x=g[i];
calc();
long long ans=;
for (int i=S-;i<T;++i)//这个范围自己考虑一下就好了
ans=max(ans,F[i]);//所有位置取max
printf("%lld\n",ans);
}

模仿这个题目在TOJ出了一个题,还无人AC 烟村四五家

Fuzzy Search

 CodeForces - 528D

Leonid works for a small and promising start-up that works on decoding the human genome. His duties include solving complex problems of finding certain patterns in long strings consisting of letters 'A', 'T', 'G' and 'C'.

Let's consider the following scenario. There is a fragment of a human DNA chain, recorded as a string S. To analyze the fragment, you need to find all occurrences of string T in a string S. However, the matter is complicated by the fact that the original chain fragment could contain minor mutations, which, however, complicate the task of finding a fragment. Leonid proposed the following approach to solve this problem.

Let's write down integer k ≥ 0 — the error threshold. We will say that string Toccurs in string S on position i (1 ≤ i ≤ |S| - |T| + 1), if after putting string Talong with this position, each character of string T corresponds to the some character of the same value in string S at the distance of at most k. More formally, for any j (1 ≤ j ≤ |T|) there must exist such p (1 ≤ p ≤ |S|), that |(i + j - 1) - p| ≤ k and S[p] = T[j].

For example, corresponding to the given definition, string "ACAT" occurs in string "AGCAATTCAT" in positions 2, 3 and 6.

Note that at k = 0 the given definition transforms to a simple definition of the occurrence of a string in a string.

Help Leonid by calculating in how many positions the given string T occurs in the given string S with the given error threshold.

Input

The first line contains three integers |S|, |T|, k (1 ≤ |T| ≤ |S| ≤ 200 000, 0 ≤ k ≤ 200 000) — the lengths of strings S and T and the error threshold.

The second line contains string S.

The third line contains string T.

Both strings consist only of uppercase letters 'A', 'T', 'G' and 'C'.

Output

Print a single number — the number of occurrences of T in S with the error threshold k by the given definition.

Examples

Input
10 4 1
AGCAATTCAT
ACAT
Output
3

Note

If you happen to know about the structure of the human genome a little more than the author of the problem, and you are not impressed with Leonid's original approach, do not take everything described above seriously.

#include<bits/stdc++.h>
using namespace std;
typedef double db;
const db PI=acos(-1.0);
struct Complex
{
db x,y;
Complex(db _x=0.0,db _y=0.0):x(_x),y(_y){}
Complex operator + (const Complex &b)const
{
return Complex(x+b.x,y+b.y);
}
Complex operator - (const Complex &b)const
{
return Complex(x-b.x,y-b.y);
}
Complex operator * (const Complex &b)const
{
return Complex(x*b.x-y*b.y,x*b.y+y*b.x);
}
};
void change(Complex y[],int len)
{
for(int i=,j=len/;i<len-;i++)
{
if(i<j)swap(y[i],y[j]);
int k=len/;
while(j>=k)
{
j-=k;
k/=;
}
if(j<k)j+=k;
}
}
void fft(Complex y[],int len,int on)
{
change(y,len);
for(int h=;h<=len;h<<=)
{
Complex wn(cos(-on**PI/h),sin(-on**PI/h));
for(int j=;j<len;j+=h)
{
Complex w(,);
for(int k=j;k<j+h/;k++)
{
Complex u=y[k];
Complex t=w*y[k+h/];
y[k]=u+t;
y[k+h/]=u-t;
w=w*wn;
}
}
}
if(on==-)
for(int i=;i<len;i++)
y[i].x/=len;
}
const char ch[]={'A','C','G','T'};
int lens,lent,k;
char s[],t[];
int es[],ps[];
Complex ss[],tt[];
int cnt[][];
void work(int id)
{
memset(es,,sizeof(es));
memset(ps,,sizeof(ps));
memset(ss,,sizeof(ss));
memset(tt,,sizeof(tt));
for(int i=;i<lens;i++)
if(s[i]==ch[id])
{
es[max(i-k,)]++;
es[min(i+k+,lens)]--;
}
ps[]=es[];
for(int i=;i<lens;i++)ps[i]=es[i]+ps[i-];
for(int i=;i<lens;i++)ss[i].x=(ps[i]>);
for(int i=;i<lent;i++)tt[i].x=(t[i]==ch[id]);
reverse(tt,tt+lent);
int len=;
while(len<*lens || len<*lent)len<<=;
fft(ss,len,);
fft(tt,len,);
for(int i=;i<len;i++)ss[i]=ss[i]*tt[i];
fft(ss,len,-);
for(int i=;i<lens;i++)cnt[id][i]=(int)(ss[i+lent-].x+0.5);
}
int main()
{
scanf("%d%d%d",&lens,&lent,&k);
scanf("%s%s",s,t);
for(int i=;i<;i++)work(i);
int ans=;
for(int i=;i<lens;i++)
{
int tot=;
for(int j=;j<;j++)tot+=cnt[j][i];
ans+=(tot==lent);
}
printf("%d\n",ans);
return ;
}

以前刷过的FFT的更多相关文章

  1. 点分治Day1

    树套树Day2暂且搁置...因为Day1的题我各种不会做... 唯一过了一道还是整体二分过的... 我们来一点愉快的算法,先不考虑数据结构这种骚东西了 毕竟还在发烧,就先码码这几天在搞的点分治吧 hx ...

  2. 【刷题】BZOJ 2179 FFT快速傅立叶

    Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. Output 输出 ...

  3. [暑假的bzoj刷水记录]

    (这篇我就不信有网站来扣) 这个暑假打算刷刷题啥的 但是写博客好累啊  堆一起算了 隔一段更新一下.  7月27号之前刷的的就不写了 , 写的累 代码不贴了,可以找我要啊.. 2017.8.27upd ...

  4. 洛谷P1919 【模板】A*B Problem升级版 题解(FFT的第一次实战)

    洛谷P1919 [模板]A*B Problem升级版(FFT快速傅里叶) 刚学了FFT,我们来刷一道模板题. 题目描述 给定两个长度为 n 的两个十进制数,求它们的乘积. n<=100000 如 ...

  5. ZJOI2019一轮停课刷题记录

    Preface 菜鸡HL终于狗来了他的省选停课,这次的时间很长,暂定停到一试结束,不过有机会二试的话还是可以搞到4月了 这段时间的学习就变得量大而且杂了,一般以刷薄弱的知识点和补一些新的奇怪技巧为主. ...

  6. 【BZOJ 3451】Tyvj1953 Normal 思维题+期望概率+FFT+点分治

    我感觉是很强的一道题……即使我在刷专题,即使我知道这题是fft+点分治,我仍然做不出来……可能是知道是fft+点分治限制了我的思路???(别做梦了,再怎样也想不出来的……)我做这道题的话,一看就想单独 ...

  7. 多项式乘法,FFT与NTT

    多项式: 多项式?不会 多项式加法: 同类项系数相加: 多项式乘法: A*B=C $A=a_0x^0+a_1x^1+a_2x^2+...+a_ix^i+...+a_{n-1}x^{n-1}$ $B=b ...

  8. 洛谷P1919 A*B problem 快速傅里叶变换模板 [FFT]

    题目传送门 A*B problem 题目描述 给出两个n位10进制整数x和y,你需要计算x*y. 输入输出格式 输入格式: 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数 ...

  9. bzoj 4503 两个串 快速傅里叶变换FFT

    题目大意: 给定两个\((length \leq 10^5)\)的字符串,问第二个串在第一个串中出现了多少次.并且第二个串中含有单字符通配符. 题解: 首先我们从kmp的角度去考虑 这道题从字符串数据 ...

随机推荐

  1. iOS Programming Autorotation, Popover Controllers, and Modal View Controllers

    iOS Programming Autorotation, Popover Controllers, and Modal View Controllers  自动旋转,Popover 控制器,Moda ...

  2. POJ Charm Bracelet 挑饰品 (常规01背包)

    问题:去珠宝店抢饰品,给出饰品种数n,能带走的重量m,以及每种饰品的重量w与价值v.求能带走的最大量. 思路:常规01背包. #include <iostream> using names ...

  3. 使用Timer组件制作计时器

    实现效果: 知识运用: Timer组件的interval属性 //获取或设置Timer组件Tick事件发生的时间间隔 public int Interval {get;set} NumericUpDo ...

  4. Talent Show

    6349: Talent Show 时间限制: 1 Sec  内存限制: 128 MB提交: 106  解决: 40[提交] [状态] [讨论版] [命题人:admin] 题目描述 Farmer Jo ...

  5. WINDOWS-基础:LPTSTR

    1. LPTSTR解释 与char*等价,表示普通字符/字符串变量,指向字符/字符串的指针. LP:  长指针(long pointer). T:   win32环境中有一个_T宏,用来标识字符是否采 ...

  6. NOIP模拟赛 数列

    Problem 2 数列(seq.cpp/c/pas) [题目描述] a[1]=a[2]=a[3]=1 a[x]=a[x-3]+a[x-1]  (x>3) 求a数列的第n项对1000000007 ...

  7. ubuntu : 无法安全地用该源进行更新,所以默认禁用该源。

    sudo apt update报错: 无法安全地用该源进行更新,所以默认禁用该源. 1.检查是否是网络出了问题,修改DNS:114.114.114.114,8.8.8.8 断开网卡再重新连接,成功! ...

  8. http客户端与浏览器的区别

    两者区别:浏览器对http响应头会进行特定处理(如自动读取本地缓存.设置cookie等),而http客户端(如crul)可能没有像浏览器那样的处理,某些封装程度高的http客户端,可能会有. 同一个文 ...

  9. pandas按索引插入对应值的处理方法 - join

    在工作中遇到一个问题即,实时的车辆数据中,需要将车辆的vid(一个Series)对应上其通用名称,以及车辆用途等信息进行统计. 正常的小规模操作是利用一个循环,查找vid 在另一张vid对应车辆名称用 ...

  10. Python基础-函数参数

    Python基础-函数参数 写在前面 如非特别说明,下文均基于Python3 摘要 本文详细介绍了函数的各种形参类型,包括位置参数,默认参数值,关键字参数,任意参数列表,强制关键字参数:也介绍了调用函 ...