Poor Hanamichi

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 893    Accepted Submission(s): 407

Problem Description
Hanamichi
is taking part in a programming contest, and he is assigned to solve a
special problem as follow: Given a range [l, r] (including l and r),
find out how many numbers in this range have the property: the sum of
its odd digits is smaller than the sum of its even digits and the
difference is 3.

A integer X can be represented in decimal as:
X=An×10n+An−1×10n−1+…+A2×102+A1×101+A0
The odd dights are A1,A3,A5… and A0,A2,A4… are even digits.

Hanamichi comes up with a solution, He notices that:
102k+1 mod 11 = -1 (or 10), 102k mod 11 = 1,
So X mod 11
= (An×10n+An−1×10n−1+…+A2×102+A1×101+A0)mod11
= An×(−1)n+An−1×(−1)n−1+…+A2−A1+A0
= sum_of_even_digits – sum_of_odd_digits
So
he claimed that the answer is the number of numbers X in the range
which satisfy the function: X mod 11 = 3. He calculate the answer in
this way :
Answer = (r + 8) / 11 – (l – 1 + 8) / 11.

Rukaw
heard of Hanamichi’s solution from you and he proved there is something
wrong with Hanamichi’s solution. So he decided to change the test data
so that Hanamichi’s solution can not pass any single test. And he asks
you to do that for him.

 
Input
You
are given a integer T (1 ≤ T ≤ 100), which tells how many single tests
the final test data has. And for the following T lines, each line
contains two integers l and r, which are the original test data. (1 ≤ l ≤
r ≤ 1018)
 
Output
You
are only allowed to change the value of r to a integer R which is not
greater than the original r (and R ≥ l should be satisfied) and make
Hanamichi’s solution fails this test data. If you can do that, output a
single number each line, which is the smallest R you find. If not, just
output -1 instead.
 
Sample Input
3
3 4
2 50
7 83
 
Sample Output
-1
-1
80
 
题意:现在想得到[l,r]区间里面有多少个数字的偶数位之和比奇数位大 3,然后有人就想了个办法,然后bilibilibilibili得到一个公式来计算ans = (r+8)/11-(l+1-8)/11
现在有人怀疑他这样做是错的,然后想来验证这种做法,于是给出区间[l,r],验证这段区间是否上述公式,如果满足,输出-1,不满足,输出不满足的最小的那个数字。
题解:对 [l,r]里面的每个数进行判断,先用公式求一遍,然后再判断一下这个数,如果公式所得不等于当前暴力枚举的结果,直接break
#include <stdio.h>
#include <math.h>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <vector>
using namespace std;
typedef long long LL; bool judge(LL x){
LL bit[];
int t = ;
while(x){
bit[t++] = x%;
x/=;
}
LL odd=,even=;
for(int i=;i<t;i+=){
odd+=bit[i];
}
for(int i=;i<t;i+=){
even+=bit[i];
}
if(odd-even==) return true;
return false;
}
int main()
{
int tcase;
scanf("%d",&tcase);
while(tcase--){
LL l,r;
scanf("%lld%lld",&l,&r);
LL ans = -,x=;
for(LL i=l;i<=r;i++){
LL temp = (i+)/- (l-+)/;
if(judge(i)){
x++;
}
if(x!=temp){
ans = i;
break;
}
}
printf("%lld\n",ans);
}
}

hdu 4956(思路题)的更多相关文章

  1. hdu 4908(思路题)

    BestCoder Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  2. Proud Merchants HDU - 3466 (思路题--有排序的01背包)

    Recently, iSea went to an ancient country. For such a long time, it was the most wealthy and powerfu ...

  3. hdu 5191(思路题)

    Building Blocks Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  4. hdu 5101(思路题)

    Select Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  5. hdu 5063(思路题-反向操作数组)

    Operation the Sequence Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  6. hdu 4859(思路题)

    Goffi and Squary Partition Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja ...

  7. hdu 5400(思路题)

    Arithmetic Sequence Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  8. HDU 1173 思路题

    题目大意 有n个地点(坐标为实数)需要挖矿,让选择一个地点,使得在这个地方建造基地,到n个地点的距离和最短,输出基地的坐标. 题解+代码: 1 /* 2 把这个二维分开看(即把所有点投影到x轴上,再把 ...

  9. 51nod P1305 Pairwise Sum and Divide ——思路题

    久しぶり! 发现的一道有意思的题,想了半天都没有找到规律,结果竟然是思路题..(在大佬题解的帮助下) 原题戳>>https://www.51nod.com/onlineJudge/ques ...

随机推荐

  1. 迭代器Iterator与语法糖for-each

    一.为什么需要迭代器 设计模式迭代器 迭代器作用于集合,是用来遍历集合元素的对象.迭代器迭代器不是Java独有的,大部分高级语言都提供了迭代器来遍历集合.实际上,迭代器是一种设计模式: 迭代器模式提供 ...

  2. debug模式开启会做哪些事(源码分析)

    以往开发中不管是django框架下开发还是其它框架下开发, 只知道在开发阶段要开启debug模式, 却一直没有深究它会我们做哪些事, 今天使用tornado时偶然看到源码中写的很清楚,故写下来加深印象 ...

  3. Diycode开源项目 UserActivity分析

    1.效果预览 1.1.实际界面预览 1.2. 这是MainActivity中的代码 这里执行了跳转到自己的用户界面的功能. 1.3.点击头像或者用户名跳转到别人的页面 UserActivity的结构由 ...

  4. 2 Model层 -定义模型

    1  ORM简介 MVC框架中包括一个重要的部分,就是ORM,它实现了数据模型与数据库的解耦,即数据模型的设计不需要依赖于特定的数据库,通过简单的配置就可以轻松更换数据库 ORM是“对象-关系-映射” ...

  5. React-表单操作

    用户在表单填入的内容,属于用户跟组件的互动,所以不能用 this.props 读取 <!DOCTYPE html> <html lang="zh-cn"> ...

  6. .net core 项目加载提示项目文件不完整缺少预期导入的解决办法

    今天把在远端的仓库的代码在另一台电脑上拷贝下来,电脑上.net core 环境也已经安装了,但是发现有几个项目没有加载成功,然后重新加载项目,vs2017却提示 项目文件不完整,缺少预期导入 查看错误 ...

  7. laravel5.2总结--本地化以及常量的使用

    1.本地化 Laravel 的本地化功能提供方便的方法来获取多语言的字符串,让你的网站可以简单的支持多语言. 语言包存放在 resources/lang 文件夹的文件里.每一个子目录应该对应一种语言 ...

  8. 在 Amazon AWS 搭建及部署网站:(二)安装、配置软件,启动网站

    现在,我们已经有了一台EC2主机,具备了基本的硬件环境.下面,开始软件环境的配置. 第一步:连接服务器 后面所有的一切,都需要在SSH终端窗口操作.首先,我们需要一个SSH客户端.PuTTY是很常用的 ...

  9. StartWith 测试

    var clientConfiguration = GetConfiguration("couchbase.json"); ClusterHelper.Initialize(cli ...

  10. 【Maximal Rectangle】cpp

    题目: Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones ...