P1306 斐波那契公约数

题目描述

对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少?

输入输出格式

输入格式:

两个正整数n和m。(n,m<=10^9)

注意:数据很大

输出格式:

Fn和Fm的最大公约数。

由于看了大数字就头晕,所以只要输出最后的8位数字就可以了。

输入输出样例

输入样例#1:

4 7
输出样例#1:

1

说明

用递归&递推会超时

用通项公式也会超时

矩阵乘法优化斐波那契

斐波那契数列的一个小性质:gcd(f[i],f[j])=f[gcd(i,j)]

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define mod 100000000
using namespace std;
int n,m,gcd;
int read()
{
    ,f=; char ch=getchar();
    ;ch=getchar();}
    +ch-',ch=getchar();
    return x*f;
}
struct Node
{
    ][];
    Node(){memset(m,,sizeof(m));}
}mb,ans;
int GCD(int a,int b)
{
    ) return a;
    return GCD(b,a%b);
}
Node operator*(Node a,Node b)
{
    Node c;
    ;i<=;i++)
     ;j<=;j++)
      ;k<=;k++)
       c.m[i][j]=(c.m[i][j]%mod+a.m[i][k]*b.m[k][j]%mod)%mod;
    return c;
}
int main()
{
    n=read(),m=read();
    gcd=GCD(n,m);
    mb.m[][]=mb.m[][]=mb.m[][]=;
    ans.m[][]=ans.m[][]=;
    while(gcd)
    {
        &gcd) ans=ans*mb;
        mb=mb*mb;gcd>>=;
    }
    cout<<ans.m[][];
    ;
}

洛谷——P1306 斐波那契公约数的更多相关文章

  1. 洛谷 P1306 斐波那契公约数

    洛谷 P1306 斐波那契公约数 题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? ...

  2. 洛谷 P1306 斐波那契公约数 解题报告

    P1306 斐波那契公约数 题意:求\(Fibonacci\)数列第\(n\)项和第\(m\)项的最大公约数的最后8位. 数据范围:\(1<=n,m<=10^9\) 一些很有趣的性质 引理 ...

  3. 洛谷- P1306 斐波那契公约数 - 矩阵快速幂 斐波那契性质

    P1306 斐波那契公约数:https://www.luogu.org/problemnew/show/P1306 这道题目就是求第n项和第m项的斐波那契数字,然后让这两个数求GCD,输出答案的后8位 ...

  4. 洛谷P1306 斐波那契公约数

    题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? 输入输出格式 输入格式: 两个正整 ...

  5. 洛谷 P1306 斐波那契公约数 题解

    题面 结论:gcd(F[n],F[m])=F[gcd(n,m)]; F[n]=a和F[n+1]=b F[n+2]=a+b,F[n+3]=a+2b,…F[m]=F[m?n?1]a+F[m?n]b F[n ...

  6. 洛谷P1962 斐波那契数列【矩阵运算】

    洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...

  7. 洛谷P3938 斐波那契

    题目戳 题目描述 小 C 养了一些很可爱的兔子. 有一天,小 C 突然发现兔子们都是严格按照伟大的数学家斐波那契提出的模型来进行 繁衍:一对兔子从出生后第二个月起,每个月刚开始的时候都会产下一对小兔子 ...

  8. P1306 斐波那契公约数

    题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? 输入输出格式 输入格式: 两个正整 ...

  9. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

随机推荐

  1. winform中使用webBrowser时如何与JS交互

    最近写一个GEPlugin项目,要用到geWebBrowser与JS进行交互. 这个geWebBrowser的事件 private void geWebBrowser1_DocumentComplet ...

  2. Redis实现之RDB持久化(一)

    RDB持久化 Redis是一个键值对数据库服务器,服务器中通常包含着任意个非空数据库,而每个非空数据库中又可以包含任意个键值对,为了方便起见,我们将服务器中的非空数据库以及它们的键值对统称为数据库状态 ...

  3. itchat 动态注册

    动态注册时可以选择将itchat.run()放入另一线程或使用configured_reply()方法处理消息. 两种方法分别是: # 使用另一线程,但注意不要让程序运行终止 import threa ...

  4. loj2055 「TJOI / HEOI2016」排序

    ref #include <iostream> #include <cstring> #include <cstdio> using namespace std; ...

  5. [python][django学习篇][9]设计正在博客视图(3)

    需求: 真正的首页视图函数,当用户访问我们的博客首页时,他将看到我们发表的博客文章列表,就像 演示项目 里展示的这样.t https://docs.djangoproject.com/en/1.10/ ...

  6. quagga源码学习--BGP协议的初始化

    quagga支持BGP-4,BGP-4+协议,支持多协议(mpls,isis,ospf等等)以及单播,组播路由的导入和分发. 具体的协议,这里就不附录了,网络上有很多资料,或者RFC. 协议源码的学习 ...

  7. MySql 存储过程实例(附完整注释)(转)

    MySql 存储过程实例(附完整注释) 将下面的语句复制粘贴可以一次性执行完,我已经测试过,没有问题! MySql存储过程简单实例:                                   ...

  8. eclipse中 tomcat首页server Locations变灰无法编辑

    解决办法: 1.首先将Servers中部署的工程全部清空 2.然后对Tomcat v8.0 Server at localhost,点右键进行clean处理,再重新双击打开server服务即可.

  9. FreeBSD查看带宽占用情况,CPU,硬盘IO 虚拟内存等命令

    FreeBSD查看带宽占用情况,CPU,硬盘IO 虚拟内存等命令 来源 https://www.liurongxing.com/freebsd-tips.html 来源 http://blog.51c ...

  10. [luogu1707] 刷题比赛 [矩阵快速幂]

    题面: 传送门 思路: 一眼看上去是三个递推......好像还挺麻烦的 仔细观察一下,发现也就是一个线性递推,但是其中后面的常数项比较麻烦 观察一下,这里面有以下三个递推是比较麻烦的 第一个是$k^2 ...