6.12自我总结

一.numpy模块

import numpy as np约定俗称要把他变成np

1.模块官方文档地址

https://docs.scipy.org/doc/numpy/reference/?v=20190307135750

2.创建矩阵

1.np.array

import numpy as np
#创建一维的ndarray对象
arr = np.array([1, 2, 3])
print(arr)
#[1 2 3] #创建二维的ndarray对象
arr = np.array([[1, 2, 3],
[4,5,6]])
print(arr)
'''
[[1 2 3]
[4 5 6]]
'''
#创建三维的ndarray对象
arr = np.array([[[1, 2, 3],[3,2,1]],
[[4,5,6],[6,5,4]]])
print(arr)
'''
[[[1 2 3]
[3 2 1]] [[4 5 6]
[6 5 4]]]
''' #我们可以这样理解.其实内这个可以相当于几何里面的,点,线,面,里面各个元素相当一个点,一个列表里面有几个元素相当于线也就是一维,然后列表里面套列表相当于线,以此类推

3.对于矩阵的操作(ndarray对象的方法)

1.shape(查看ndarray对象的形式)

import numpy as np
arr = np.array([[1, 2, 3],
[4,5,6]])
print(arr.shape)
#(2, 3)
# (矩阵的行数,矩阵的列数)

2.切分工具

import numpy as np
arr = np.array([[1, 2, 3],
[4,5,6]]) #取第一行全部
print(arr[0,:]) #取第一列全部
print(arr[:,0]) #取第二行第二个
print(arr[1,1],type(arr[1,1])) #5 <class 'numpy.int32'>
print(arr[1,1:2],type(arr[1,1:2]))#[5] <class 'numpy.ndarray'> #取第二行第第二个和第三个
print(arr[1,1:3]) #取大于3的值
print(arr[arr>3]) #取第第一列大于3的值
arr_lien = arr[:,0]
print(arr_lien[arr_lien>3])

3.生成布尔矩阵

import numpy as np
arr = np.array([[1, 2, 3],
[4,5,6]])
print(arr>5)
'''
[[False False False]
[False False True]]
'''

4.矩阵的替换

用切片取值然后进行赋值

5.矩阵合并

1.np.concatenate
import numpy as np
arr1 = np.array([[1, 2, 3],
[4,5,6]])
arr1 = np.array([[3, 2, 4],
[5,3,7]]) print(np.concatenate((arr1,arr2),axis=0或1) #前面只能写入一个容器,后面用axis控制竖着合并还是横着合并

6.矩阵的生成

1.arange
np.arage(起始值,结束值,步长)#顾头不顾尾,用法类似for 循环中的range
2.linspace/logspace
# 构造一个等差数列,取头也取尾,从0取到20,取5个数
print(np.linspace(0, 20, 5))
#[ 0. 5. 10. 15. 20.] # 构造一个等比数列,从10**0取到10**20,取5个数
print(np.logspace(0, 20, 5))
[1.e+00 1.e+05 1.e+10 1.e+15 1.e+20]
3.zeros/ones/eye
# 构造3*4的全0矩阵
print(np.zeros((3, 4))) #填的值为(行数,列数) # 构造3*4的全1矩阵
print(np.ones((3, 4))) #填的值为(行数,列数) # 构造3个主元的单位矩阵
print(np.eye(3)) #填的值为(主元的个数)
'''
[[ 1. 0. 0.]
[ 0. 1. 0.]
[ 0. 0. 1.]]
'''
4.fromstring/fromfunction
# fromstring通过对字符串的字符编码所对应ASCII编码的位置,生成一个ndarray对象
s = 'abcdef'
# np.int8表示一个字符的字节数为8
print(np.fromstring(s, dtype=np.int8)) def func(i, j):
"""其中i为矩阵的行,j为矩阵的列"""
return i*j # 使用函数对矩阵元素的行和列的索引做处理,得到当前元素的值,索引从0开始,并构造一个3*4的矩阵
print(np.fromfunction(func, (3, 4)))
7.随机生成(np.random)
# RandomState()方法会让数据值随机一次,之后都是相同的数据
rs = np.random.RandomState(1)
print(rs.rand(10)) # 构造3*4的均匀分布的矩阵
# seed()方法会让数据值随机一次,之后都是相同的数据
np.random.seed(1)
print(np.random.rand(3, 4)) # 构造3*4*5的均匀分布的矩阵
print(np.random.rand(3, 4, 5)) # 构造3*4的正态分布的矩阵
print(np.random.randn(3, 4)) # 构造取值为1-5内的10个元素的ndarray数组
print(np.random.randint(1, 5, 10)) # 构造取值为0-1内的3*4的矩阵
print(np.random.random_sample((3, 4))) # 随机选取arr中的两个元素
print(np.random.choice(arr, size=2))

对照表

函数名称 函数功能 参数说明
rand(d0,d1,⋯,dn) 产生[0,1)内的均匀分布的随机数 dn为第n维数据的维度
randn(d0,d1,⋯,dn) 产生标准正态分布随机数 dn为第n维数据的维度
randint(low[, high, size, dtype]) 产生随机整数 low:最小值;high:最大值;size:数据个数
random_sample([size]) 在[0,1)内产生随机数 size为随机数的shape,可以为元祖或者列表
choice(a[, size]) 从arr中随机选择指定数据 arr为1维数组;size为数据形状

4.矩阵运算(与数据类型差不多)

运算表

运算符 说明
+ 两个矩阵对应元素相加
- 两个矩阵对应元素相减
* 两个矩阵对应元素相乘
/ 两个矩阵对应元素相除,如果都是整数则取商
% 两个矩阵对应元素相除后取余数
**n 单个矩阵每个元素都取n次方,如**2:每个元素都取平方

4.矩阵的行和列互换(transpose)

5.矩阵的最大最小值 ,平均值,方差

1.最大值ndarray对象.max

2.最小值ndarray对象.min

3.平均值ndarray对象.mean

4.方差ndarray对象.var

()代表区别

(axis=0)每列

(axis=1)每行

# 获取矩阵所有元素中的最大值
print(arr.max()) # 获取举着每一列的最大值
print(arr.max(axis=0)) # 获取矩阵每一行的最大值
print(arr.max(axis=1)) # 获取矩阵最大元素的索引位置
print(arr.argmax(axis=1) # 获取矩阵所有元素的平均值
print(arr.mean()) # 获取矩阵每一列的平均值
print(arr.mean(axis=0)) # 获取矩阵每一行的平均值
print(arr.mean(axis=1)) # 获取矩阵所有元素的方差
print(arr.var()) # 获取矩阵每一列的元素的方差
print(arr.var(axis=0)) # 获取矩阵每一行的元素的方差
print(arr.var(axis=1))

numpy模块(对矩阵的处理,ndarray对象)的更多相关文章

  1. Pathon中numpy模块

    目录 numpy模块 切割矩阵 矩阵元素替换 矩阵的合并 通过函数创建矩阵 fromstring/fromfunctions 矩阵的运算 常用矩阵运函数 矩阵的点乘 矩阵的逆 矩阵的其他操作 nump ...

  2. 开发技术--Numpy模块

    开发|Numpy模块 Numpy模块是数据分析基础包,所以还是很重要的,耐心去体会Numpy这个工具可以做什么,我将从源码与 地产呢个实现方式说起,祝大家阅读愉快! Numpy模块提供了两个重要对象: ...

  3. numpy模块之创建矩阵、矩阵运算

    本文参考给妹子讲python  https://zhuanlan.zhihu.com/p/34673397 NumPy是Numerical Python的简写,是高性能科学计算和数据分析的基础包,他是 ...

  4. Numpy Ndarray对象1

    标准安装的Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指 针.这样为了保存一个简单的[1,2,3],需要有3个指针和三 ...

  5. Numpy Ndarray对象

    Numpy 最重要的一个特点是 N 维数组对象 ndarrary ,它是一系列同类型数据的集合,以 0 下标为开始进行集合中的索引. ndarray 对象是用于存放同类型元素的多维数组. ndarra ...

  6. 3.1Python数据处理篇之Numpy系列(一)---ndarray对象的属性与numpy的数据类型

    目录 目录 (一)简单的数组创建 1.numpy的介绍: 2.numpy的数组对象ndarray: 3.np.array(list/tuple)创建数组: (二)ndarray对象的属性 1.五个常用 ...

  7. NumPy Ndarray 对象

    NumPy Ndarray 对象 NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引. ndarray 对象是用于存放 ...

  8. NumPy-快速处理数据--ndarray对象--多维数组的存取、结构体数组存取、内存对齐、Numpy内存结构

    本文摘自<用Python做科学计算>,版权归原作者所有. 上一篇讲到:NumPy-快速处理数据--ndarray对象--数组的创建和存取 接下来接着介绍多维数组的存取.结构体数组存取.内存 ...

  9. Numpy | 02 Ndarray 对象

    NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引. ndarray 对象是用于存放同类型元素的多维数组. ndarr ...

随机推荐

  1. mysql整理(个人)

    注意:以下命令都是在Linux系统下执行的: 1.验证mysql是否安装成功: mysqladmin --version 2.连接mysql服务器: mysql -u root -p 之后输入密码 3 ...

  2. PAT甲级——1126 Eulerian Path

    我是先在CSDN上发布的这篇文章:https://blog.csdn.net/weixin_44385565/article/details/89155050 1126 Eulerian Path ( ...

  3. java数据结构----树

    1.树:树通常结合了有序数组和链表的优点,在树中查找数据项的速度和在有序数组中查找一样快,并且插入数据项和删除数据项的速度也和链表一样快. 2.树由边连接的节点而构成.节点一般代表着一些实体,节点间的 ...

  4. python_12(并发编程)

    第1章 进程 1.1 队列Queue 1.2 Queue方法 1.2.1 q.get([block [,timeout]]) 1.2.2 q.get_nowait() 1.2.3 q.put(item ...

  5. git stash暂存当前正在进行的工作

    git stash 可用来暂存当前正在进行的工作, 比如想pull 最新代码, 又不想加新commit, 或者另外一种情况,为了fix 一个紧急的bug,  先stash, 使返回到自己上一个comm ...

  6. let和const注意点

    let 一.块级作用域 下面的代码如果使用var,最后输出的是10. var a = []; for (var i = 0; i < 10; i++) { a[i] = function () ...

  7. 提升 Web开发性能的 10 个技巧

    随着网络的高速发展,网络性能的持续提高成为能否在芸芸App中脱颖而出的关键.高度联结的世界意味着用户对网络体验提出了更严苛的要求.假如你的网站不能做到快速响应,又或你的App存在延迟,用户很快就会移情 ...

  8. Eclipse中一直出现 Android SDK resolving error markers

    Eclipse中一直出现“Android SDK: resolving error markers”. 此类情况网上有诸多描述以及相应尝试性的解决方法,不久前本人即出现此类情况,尝试多种方案后未能解决 ...

  9. SQLServer同一实例下事务操作

    参考代码: 引用Dapper public bool OrderAdd2(User user, Order order) { string dbString = ConfigurationManage ...

  10. SQL增删查改语句

    一.增:有4种方法 1.使用insert插入单行数据: 语法:insert [into] <表名> [列名] values <列值> insert into sheet1 va ...