https://www.cs.utah.edu/~jeffp/teaching/cs5955/L3-Chern-Hoeff.pdf

【大数据-通过随机过程降维 】

When dealing with modern big data sets, a very common theme is reducing the set through a random process. These generally work by making “many simple estimates” of the full data set, and then judging them as a whole. Perhaps magically, these “many simple estimates” can provide a very accurate and small representation of the large data set. The key tool in showing how many of these simple estimates are needed for a fixed accuracy trade-off is the Chernoff-Hoeffding inequality [2, 6]. This document provides a simple form of this bound, and two examples of its use.

【对全集多次简单评估,对不同次结果进行聚合二得出对全集的评估】

[2] Herman Chernoff. A measure of asymptotic efficiency for tests of hypothesis based on the sum of observations. Annals of Mathematical Statistics, 23:493–509, 1952. [3] Sanjoy Dasgupta and Anupam Gupta. An elmentary proof of a theorem of johnson and lindenstrauss. Random Structures & Algorithms, 22:60–65, 2003. [4] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge, 2009. [5] P. Frankl and H. Maehara. The Johnson-Lindenstrauss lemma and the spericity of some graphs. Journal of Combinatorial Theory, Series A, (355–362), 1987. [6] Wassily Hoeffding. Probability inequalities for the sum of bounded random variables. Journal of the American Statisitcal Association, 58:13–30, 1963.

http://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf

Can Markov’s and Chebyshev’s Inequality be improved for this particular kind of random variable?

Chernoff-Hoeffding inequality -- Chernoff bounds, and some applications的更多相关文章

  1. Hoeffding inequality

    Hoeffding公式为 \epsilon]\leq{2e^{-2\epsilon^2N}}"> 如果把Training error和Test error分别看成和的话,Hoeffdi ...

  2. 机器学习(4)Hoeffding Inequality--界定概率边界

    问题 假设空间的样本复杂度(sample complexity):随着问题规模的增长导致所需训练样本的增长称为sample complexity. 实际情况中,最有可能限制学习器成功的因素是训练数据的 ...

  3. Andrew Ng机器学习公开课笔记 -- 学习理论

    网易公开课,第9,10课 notes,http://cs229.stanford.edu/notes/cs229-notes4.pdf 这章要讨论的问题是,如何去评价和选择学习算法   Bias/va ...

  4. Basic Mathematics You Should Mastered

    Basic Mathematics You Should Mastered 2017-08-17  21:22:40  1. Statistical distance  In statistics,  ...

  5. Machine Learning——吴恩达机器学习笔记(酷

    [1] ML Introduction a. supervised learning & unsupervised learning 监督学习:从给定的训练数据集中学习出一个函数(模型参数), ...

  6. 【集成模型】Bootstrap Aggregating(Bagging)

    0 - 思想 如下图所示,Bagging(Bootstrap Aggregating)的基本思想是,从训练数据集中有返回的抽象m次形成m个子数据集(bootstrapping),对于每一个子数据集训练 ...

  7. Stanford CS229 Machine Learning by Andrew Ng

    CS229 Machine Learning Stanford Course by Andrew Ng Course material, problem set Matlab code written ...

  8. Computer Science Theory for the Information Age-2: 高维空间中的正方体和Chernoff Bounds

    高维空间中的正方体和Chernoff Bounds 本文将介绍高维空间中正方体的一些性质,以及一个非常常见也是非常有用的概率不等式——Chernoff Bounds. 考虑$d$维单位正方体$C=\{ ...

  9. 切诺夫界证明(Chernoff bound)

随机推荐

  1. Java中基本的打包jar和war文件(包括eclipse打包操作)

    前言: 为什么要打jar包? 1.举个例子,当编写一个工具类库,里面有十几个类,每个类对应一个class文件时,为了方便别人调用,是不是要装在一个文件中,方便传递和引用. 2.打jar包还有一个好处, ...

  2. UIView和UIImageView 旋转消除锯齿方法

    方法一: calendarImageView_ =[[UIImageView alloc] initWithFrame:CGRectMake(3,3,60,72)];     calendarImag ...

  3. Android与javaScript的交互

    WebView与js的交互包含两方面,一是在html中通过js调用java代码:二是在安卓java代码中调用js. 一.html中通过js调用java代码 js中调用java代码其实就记住一点,Web ...

  4. C语言实现的水仙花数

    #include <stdio.h>void main(){ int ge,shi,bai;      for (int i =100; i < 1000; i++)     {   ...

  5. ylb:转换函数Cast,Convert 指定格式返回

    ylbtech-SQL Server:SQL Server-转换函数Cast,Convert 指定格式返回 转换函数Cast,Convert 指定格式返回. ylb:转换函数Cast,Convert ...

  6. HDU2550 百步穿杨

    百步穿杨 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  7. java基础篇3之反射

    1.反射的基础 反射的基石---->Class类 java程序中的各个java类属于同一类事物,描述这类事物的java类名就是Class 获取字节码对应的实例对象(Class类型) class ...

  8. JSON之—— JSON.parse()和JSON.stringify() (插曲)

    转载请注明出处:http://blog.csdn.net/l1028386804/article/details/46391269 parse用于从一个字符串中解析出json对象,如 var str ...

  9. 移动端弹窗 layer.js 使用

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. codeforces 204(Div.1 A) Little Elephant and Interval(贪心)

    题意: 有一种个位数与最高位数字相等的数字,求在l,r的范围内,这样的数字的个数. 思路: 找下规律就知道当当n>10的时候除去个位以后的答案等于n/10,然后考虑第一个数字是否小于最后一个.小 ...