Chernoff-Hoeffding inequality -- Chernoff bounds, and some applications
https://www.cs.utah.edu/~jeffp/teaching/cs5955/L3-Chern-Hoeff.pdf
【大数据-通过随机过程降维 】
When dealing with modern big data sets, a very common theme is reducing the set through a random process. These generally work by making “many simple estimates” of the full data set, and then judging them as a whole. Perhaps magically, these “many simple estimates” can provide a very accurate and small representation of the large data set. The key tool in showing how many of these simple estimates are needed for a fixed accuracy trade-off is the Chernoff-Hoeffding inequality [2, 6]. This document provides a simple form of this bound, and two examples of its use.
【对全集多次简单评估,对不同次结果进行聚合二得出对全集的评估】
[2] Herman Chernoff. A measure of asymptotic efficiency for tests of hypothesis based on the sum of observations. Annals of Mathematical Statistics, 23:493–509, 1952. [3] Sanjoy Dasgupta and Anupam Gupta. An elmentary proof of a theorem of johnson and lindenstrauss. Random Structures & Algorithms, 22:60–65, 2003. [4] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge, 2009. [5] P. Frankl and H. Maehara. The Johnson-Lindenstrauss lemma and the spericity of some graphs. Journal of Combinatorial Theory, Series A, (355–362), 1987. [6] Wassily Hoeffding. Probability inequalities for the sum of bounded random variables. Journal of the American Statisitcal Association, 58:13–30, 1963.
http://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf
Can Markov’s and Chebyshev’s Inequality be improved for this particular kind of random variable?
Chernoff-Hoeffding inequality -- Chernoff bounds, and some applications的更多相关文章
- Hoeffding inequality
Hoeffding公式为 \epsilon]\leq{2e^{-2\epsilon^2N}}"> 如果把Training error和Test error分别看成和的话,Hoeffdi ...
- 机器学习(4)Hoeffding Inequality--界定概率边界
问题 假设空间的样本复杂度(sample complexity):随着问题规模的增长导致所需训练样本的增长称为sample complexity. 实际情况中,最有可能限制学习器成功的因素是训练数据的 ...
- Andrew Ng机器学习公开课笔记 -- 学习理论
网易公开课,第9,10课 notes,http://cs229.stanford.edu/notes/cs229-notes4.pdf 这章要讨论的问题是,如何去评价和选择学习算法 Bias/va ...
- Basic Mathematics You Should Mastered
Basic Mathematics You Should Mastered 2017-08-17 21:22:40 1. Statistical distance In statistics, ...
- Machine Learning——吴恩达机器学习笔记(酷
[1] ML Introduction a. supervised learning & unsupervised learning 监督学习:从给定的训练数据集中学习出一个函数(模型参数), ...
- 【集成模型】Bootstrap Aggregating(Bagging)
0 - 思想 如下图所示,Bagging(Bootstrap Aggregating)的基本思想是,从训练数据集中有返回的抽象m次形成m个子数据集(bootstrapping),对于每一个子数据集训练 ...
- Stanford CS229 Machine Learning by Andrew Ng
CS229 Machine Learning Stanford Course by Andrew Ng Course material, problem set Matlab code written ...
- Computer Science Theory for the Information Age-2: 高维空间中的正方体和Chernoff Bounds
高维空间中的正方体和Chernoff Bounds 本文将介绍高维空间中正方体的一些性质,以及一个非常常见也是非常有用的概率不等式——Chernoff Bounds. 考虑$d$维单位正方体$C=\{ ...
- 切诺夫界证明(Chernoff bound)
随机推荐
- mysql数据库基本操作(六)
外键约束 创建外键 前面讲的表单查询都是一张表,但项目中表与表之间是有关联的,比如我们创建的学生表,他们可能在不同班级,不同班级有不同的班主任,他们之间的关系大概是这样的:每一个班主任会对应多个学生 ...
- bzoj 4465: [Jsoi2013]游戏中的学问
4465: [Jsoi2013]游戏中的学问 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 121 Solved: 59[Submit][Statu ...
- IIS 7 Access to the path ‘c:\windows\system32\inetsrv\’ is denied
https://randypaulo.wordpress.com/2011/09/13/iis-7-access-to-the-path-cwindowssystem32inetsrv-isdenie ...
- Mysql乱码问题解决历程
可能是因为看了太多网上的关于这个问题的解决办法,可能当时是我自己没有看明白也或许是情况不一样,反正都没有解决我当初遇到的问题,现在想想可能是自己当初太无知了,第二个原因是原来大多数情况下是在windo ...
- 发现一个直播录制工具you-get
地址:https://github.com/soimort/you-get 截至到今天,支持的平台如下: Site URL Videos? Images? Audios? YouTube https: ...
- Interactive Extensions简介
自.net 3.5起,MS在System.Linq命名空间下的Enumerable对象中提供了一组IEnumerable的扩展方法,从而极大的方便了我们的查询操作.尽管如此,由于IEnumerable ...
- Spring IOC(转载)
学习过Spring框架的人一定都会听过Spring的IoC(控制反转) .DI(依赖注入)这两个概念,对于初学Spring的人来说,总觉得IoC .DI这两个概念是模糊不清的,是很难理解的,今天和大家 ...
- VS2010中 打开vc6.0的工程时,遇到的问题及解决办法
用VS2010打开vc6.0的工程时,遇到了很多的问题,下面记录下解决办法. 1. 报错: error C2065: “i”: 未声明的标识符 解决办法: 提出 i 的申明,因为 i 的申明可能在fo ...
- 2016.11.4 Injection of autowired dependencies failed
运行项目时,提示错误: org.springframework.beans.factory.BeanCreationException: Error creating bean with name ' ...
- 计算机网络漫谈:OSI七层模型与TCP/IP四层(参考)模型
提纲.png 一.七层?四层? OSI模型(Open System Interconnection Reference Model,缩写为OSI),全名“开放式系统互联通信参考模型”,是一个试图使各种 ...