Chernoff-Hoeffding inequality -- Chernoff bounds, and some applications
https://www.cs.utah.edu/~jeffp/teaching/cs5955/L3-Chern-Hoeff.pdf
【大数据-通过随机过程降维 】
When dealing with modern big data sets, a very common theme is reducing the set through a random process. These generally work by making “many simple estimates” of the full data set, and then judging them as a whole. Perhaps magically, these “many simple estimates” can provide a very accurate and small representation of the large data set. The key tool in showing how many of these simple estimates are needed for a fixed accuracy trade-off is the Chernoff-Hoeffding inequality [2, 6]. This document provides a simple form of this bound, and two examples of its use.
【对全集多次简单评估,对不同次结果进行聚合二得出对全集的评估】
[2] Herman Chernoff. A measure of asymptotic efficiency for tests of hypothesis based on the sum of observations. Annals of Mathematical Statistics, 23:493–509, 1952. [3] Sanjoy Dasgupta and Anupam Gupta. An elmentary proof of a theorem of johnson and lindenstrauss. Random Structures & Algorithms, 22:60–65, 2003. [4] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge, 2009. [5] P. Frankl and H. Maehara. The Johnson-Lindenstrauss lemma and the spericity of some graphs. Journal of Combinatorial Theory, Series A, (355–362), 1987. [6] Wassily Hoeffding. Probability inequalities for the sum of bounded random variables. Journal of the American Statisitcal Association, 58:13–30, 1963.
http://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf
Can Markov’s and Chebyshev’s Inequality be improved for this particular kind of random variable?
Chernoff-Hoeffding inequality -- Chernoff bounds, and some applications的更多相关文章
- Hoeffding inequality
Hoeffding公式为 \epsilon]\leq{2e^{-2\epsilon^2N}}"> 如果把Training error和Test error分别看成和的话,Hoeffdi ...
- 机器学习(4)Hoeffding Inequality--界定概率边界
问题 假设空间的样本复杂度(sample complexity):随着问题规模的增长导致所需训练样本的增长称为sample complexity. 实际情况中,最有可能限制学习器成功的因素是训练数据的 ...
- Andrew Ng机器学习公开课笔记 -- 学习理论
网易公开课,第9,10课 notes,http://cs229.stanford.edu/notes/cs229-notes4.pdf 这章要讨论的问题是,如何去评价和选择学习算法 Bias/va ...
- Basic Mathematics You Should Mastered
Basic Mathematics You Should Mastered 2017-08-17 21:22:40 1. Statistical distance In statistics, ...
- Machine Learning——吴恩达机器学习笔记(酷
[1] ML Introduction a. supervised learning & unsupervised learning 监督学习:从给定的训练数据集中学习出一个函数(模型参数), ...
- 【集成模型】Bootstrap Aggregating(Bagging)
0 - 思想 如下图所示,Bagging(Bootstrap Aggregating)的基本思想是,从训练数据集中有返回的抽象m次形成m个子数据集(bootstrapping),对于每一个子数据集训练 ...
- Stanford CS229 Machine Learning by Andrew Ng
CS229 Machine Learning Stanford Course by Andrew Ng Course material, problem set Matlab code written ...
- Computer Science Theory for the Information Age-2: 高维空间中的正方体和Chernoff Bounds
高维空间中的正方体和Chernoff Bounds 本文将介绍高维空间中正方体的一些性质,以及一个非常常见也是非常有用的概率不等式——Chernoff Bounds. 考虑$d$维单位正方体$C=\{ ...
- 切诺夫界证明(Chernoff bound)
随机推荐
- 笔记-迎难而上之Java基础进阶7
序列化流 把对象以流的方式写入到文件中保存,叫做对象的序列化 把文件中保存的对象,以流的方式读取出来,叫做对象大反序列化 对象的序列化流_ObjectOutputtream继承自OutputStrea ...
- rails 给类添加属性
steven@ubuntu:~/RubymineProjects/OAONLINE$ rails generate migration AddPasswordToUsers password:stri ...
- Context都没弄明白,还怎么做Android开发?
Activity mActivity =new Activity() 作为Android开发者,不知道你有没有思考过这个问题,Activity可以new吗?Android的应用程序开发采用JAVA语言 ...
- 关于 OGRE 与 OSG 的简单比较 (转)
关于 OGRE 与 OSG 的简单比较 1 前言 我曾经细致阅读过 OGRE 和 OSG 官方提供的文档,有<Pro OGRE 3D Programming>.OGRE自带手册(man ...
- 2016.11.10 Could not get JDBC Connection; nested exception is java.sql.SQLException: No suitable driver
运行项目rds_web时,出现错误提示:Could not get JDBC Connection; nested exception is java.sql.SQLException: No sui ...
- @Cacheable注解在spring3中的使用-实现缓存
转: http://blog.csdn.net/chenleixing/article/details/44815443 在软件开发中使用缓存已经有一个非常久的历史了.缓存是一种很好的设计思想,一旦 ...
- 出自 HTML4 规范的可用颜色字符串值列表(常用颜色名称及对应的十六进制值)
据称由于 HTML5 没有修改专属的颜色,HTML4 的颜色都可以在 HTML5 中正确显示. 出自 HTML4 规范的可用颜色字符串值列表如下,此表来源是 http://www.lovean.com ...
- UE把环境变量Path改了
为了比较个文件,装了UE. 文件比较完了,环境变量也被改了. 改还不是写添加式的改,是写覆盖式的改. 搞得ant都起不动了,一看Path被改的那样(C:\hy\soft\ultraedit\Ultra ...
- Java enum枚举的使用方法
一. 出现背景: 在JDK1.5之前,我们定义常量是这种:public static final String RED = "RED"; 在JDK1.5中增加了枚举类型,我们能够把 ...
- hdu 5444 Elven Postman(长春网路赛——平衡二叉树遍历)
题目链接:pid=5444http://">http://acm.hdu.edu.cn/showproblem.php?pid=5444 Elven Postman Time Limi ...