Chernoff-Hoeffding inequality -- Chernoff bounds, and some applications
https://www.cs.utah.edu/~jeffp/teaching/cs5955/L3-Chern-Hoeff.pdf
【大数据-通过随机过程降维 】
When dealing with modern big data sets, a very common theme is reducing the set through a random process. These generally work by making “many simple estimates” of the full data set, and then judging them as a whole. Perhaps magically, these “many simple estimates” can provide a very accurate and small representation of the large data set. The key tool in showing how many of these simple estimates are needed for a fixed accuracy trade-off is the Chernoff-Hoeffding inequality [2, 6]. This document provides a simple form of this bound, and two examples of its use.
【对全集多次简单评估,对不同次结果进行聚合二得出对全集的评估】
[2] Herman Chernoff. A measure of asymptotic efficiency for tests of hypothesis based on the sum of observations. Annals of Mathematical Statistics, 23:493–509, 1952. [3] Sanjoy Dasgupta and Anupam Gupta. An elmentary proof of a theorem of johnson and lindenstrauss. Random Structures & Algorithms, 22:60–65, 2003. [4] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge, 2009. [5] P. Frankl and H. Maehara. The Johnson-Lindenstrauss lemma and the spericity of some graphs. Journal of Combinatorial Theory, Series A, (355–362), 1987. [6] Wassily Hoeffding. Probability inequalities for the sum of bounded random variables. Journal of the American Statisitcal Association, 58:13–30, 1963.
http://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf
Can Markov’s and Chebyshev’s Inequality be improved for this particular kind of random variable?
Chernoff-Hoeffding inequality -- Chernoff bounds, and some applications的更多相关文章
- Hoeffding inequality
Hoeffding公式为 \epsilon]\leq{2e^{-2\epsilon^2N}}"> 如果把Training error和Test error分别看成和的话,Hoeffdi ...
- 机器学习(4)Hoeffding Inequality--界定概率边界
问题 假设空间的样本复杂度(sample complexity):随着问题规模的增长导致所需训练样本的增长称为sample complexity. 实际情况中,最有可能限制学习器成功的因素是训练数据的 ...
- Andrew Ng机器学习公开课笔记 -- 学习理论
网易公开课,第9,10课 notes,http://cs229.stanford.edu/notes/cs229-notes4.pdf 这章要讨论的问题是,如何去评价和选择学习算法 Bias/va ...
- Basic Mathematics You Should Mastered
Basic Mathematics You Should Mastered 2017-08-17 21:22:40 1. Statistical distance In statistics, ...
- Machine Learning——吴恩达机器学习笔记(酷
[1] ML Introduction a. supervised learning & unsupervised learning 监督学习:从给定的训练数据集中学习出一个函数(模型参数), ...
- 【集成模型】Bootstrap Aggregating(Bagging)
0 - 思想 如下图所示,Bagging(Bootstrap Aggregating)的基本思想是,从训练数据集中有返回的抽象m次形成m个子数据集(bootstrapping),对于每一个子数据集训练 ...
- Stanford CS229 Machine Learning by Andrew Ng
CS229 Machine Learning Stanford Course by Andrew Ng Course material, problem set Matlab code written ...
- Computer Science Theory for the Information Age-2: 高维空间中的正方体和Chernoff Bounds
高维空间中的正方体和Chernoff Bounds 本文将介绍高维空间中正方体的一些性质,以及一个非常常见也是非常有用的概率不等式——Chernoff Bounds. 考虑$d$维单位正方体$C=\{ ...
- 切诺夫界证明(Chernoff bound)
随机推荐
- Java中基本的打包jar和war文件(包括eclipse打包操作)
前言: 为什么要打jar包? 1.举个例子,当编写一个工具类库,里面有十几个类,每个类对应一个class文件时,为了方便别人调用,是不是要装在一个文件中,方便传递和引用. 2.打jar包还有一个好处, ...
- UIView和UIImageView 旋转消除锯齿方法
方法一: calendarImageView_ =[[UIImageView alloc] initWithFrame:CGRectMake(3,3,60,72)]; calendarImag ...
- Android与javaScript的交互
WebView与js的交互包含两方面,一是在html中通过js调用java代码:二是在安卓java代码中调用js. 一.html中通过js调用java代码 js中调用java代码其实就记住一点,Web ...
- C语言实现的水仙花数
#include <stdio.h>void main(){ int ge,shi,bai; for (int i =100; i < 1000; i++) { ...
- ylb:转换函数Cast,Convert 指定格式返回
ylbtech-SQL Server:SQL Server-转换函数Cast,Convert 指定格式返回 转换函数Cast,Convert 指定格式返回. ylb:转换函数Cast,Convert ...
- HDU2550 百步穿杨
百步穿杨 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submi ...
- java基础篇3之反射
1.反射的基础 反射的基石---->Class类 java程序中的各个java类属于同一类事物,描述这类事物的java类名就是Class 获取字节码对应的实例对象(Class类型) class ...
- JSON之—— JSON.parse()和JSON.stringify() (插曲)
转载请注明出处:http://blog.csdn.net/l1028386804/article/details/46391269 parse用于从一个字符串中解析出json对象,如 var str ...
- 移动端弹窗 layer.js 使用
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- codeforces 204(Div.1 A) Little Elephant and Interval(贪心)
题意: 有一种个位数与最高位数字相等的数字,求在l,r的范围内,这样的数字的个数. 思路: 找下规律就知道当当n>10的时候除去个位以后的答案等于n/10,然后考虑第一个数字是否小于最后一个.小 ...