https://www.cs.utah.edu/~jeffp/teaching/cs5955/L3-Chern-Hoeff.pdf

【大数据-通过随机过程降维 】

When dealing with modern big data sets, a very common theme is reducing the set through a random process. These generally work by making “many simple estimates” of the full data set, and then judging them as a whole. Perhaps magically, these “many simple estimates” can provide a very accurate and small representation of the large data set. The key tool in showing how many of these simple estimates are needed for a fixed accuracy trade-off is the Chernoff-Hoeffding inequality [2, 6]. This document provides a simple form of this bound, and two examples of its use.

【对全集多次简单评估,对不同次结果进行聚合二得出对全集的评估】

[2] Herman Chernoff. A measure of asymptotic efficiency for tests of hypothesis based on the sum of observations. Annals of Mathematical Statistics, 23:493–509, 1952. [3] Sanjoy Dasgupta and Anupam Gupta. An elmentary proof of a theorem of johnson and lindenstrauss. Random Structures & Algorithms, 22:60–65, 2003. [4] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge, 2009. [5] P. Frankl and H. Maehara. The Johnson-Lindenstrauss lemma and the spericity of some graphs. Journal of Combinatorial Theory, Series A, (355–362), 1987. [6] Wassily Hoeffding. Probability inequalities for the sum of bounded random variables. Journal of the American Statisitcal Association, 58:13–30, 1963.

http://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf

Can Markov’s and Chebyshev’s Inequality be improved for this particular kind of random variable?

Chernoff-Hoeffding inequality -- Chernoff bounds, and some applications的更多相关文章

  1. Hoeffding inequality

    Hoeffding公式为 \epsilon]\leq{2e^{-2\epsilon^2N}}"> 如果把Training error和Test error分别看成和的话,Hoeffdi ...

  2. 机器学习(4)Hoeffding Inequality--界定概率边界

    问题 假设空间的样本复杂度(sample complexity):随着问题规模的增长导致所需训练样本的增长称为sample complexity. 实际情况中,最有可能限制学习器成功的因素是训练数据的 ...

  3. Andrew Ng机器学习公开课笔记 -- 学习理论

    网易公开课,第9,10课 notes,http://cs229.stanford.edu/notes/cs229-notes4.pdf 这章要讨论的问题是,如何去评价和选择学习算法   Bias/va ...

  4. Basic Mathematics You Should Mastered

    Basic Mathematics You Should Mastered 2017-08-17  21:22:40  1. Statistical distance  In statistics,  ...

  5. Machine Learning——吴恩达机器学习笔记(酷

    [1] ML Introduction a. supervised learning & unsupervised learning 监督学习:从给定的训练数据集中学习出一个函数(模型参数), ...

  6. 【集成模型】Bootstrap Aggregating(Bagging)

    0 - 思想 如下图所示,Bagging(Bootstrap Aggregating)的基本思想是,从训练数据集中有返回的抽象m次形成m个子数据集(bootstrapping),对于每一个子数据集训练 ...

  7. Stanford CS229 Machine Learning by Andrew Ng

    CS229 Machine Learning Stanford Course by Andrew Ng Course material, problem set Matlab code written ...

  8. Computer Science Theory for the Information Age-2: 高维空间中的正方体和Chernoff Bounds

    高维空间中的正方体和Chernoff Bounds 本文将介绍高维空间中正方体的一些性质,以及一个非常常见也是非常有用的概率不等式——Chernoff Bounds. 考虑$d$维单位正方体$C=\{ ...

  9. 切诺夫界证明(Chernoff bound)

随机推荐

  1. 笔记-迎难而上之Java基础进阶7

    序列化流 把对象以流的方式写入到文件中保存,叫做对象的序列化 把文件中保存的对象,以流的方式读取出来,叫做对象大反序列化 对象的序列化流_ObjectOutputtream继承自OutputStrea ...

  2. rails 给类添加属性

    steven@ubuntu:~/RubymineProjects/OAONLINE$ rails generate migration AddPasswordToUsers password:stri ...

  3. Context都没弄明白,还怎么做Android开发?

    Activity mActivity =new Activity() 作为Android开发者,不知道你有没有思考过这个问题,Activity可以new吗?Android的应用程序开发采用JAVA语言 ...

  4. 关于 OGRE 与 OSG 的简单比较 (转)

    关于 OGRE 与 OSG 的简单比较 1   前言 我曾经细致阅读过 OGRE 和 OSG 官方提供的文档,有<Pro OGRE 3D Programming>.OGRE自带手册(man ...

  5. 2016.11.10 Could not get JDBC Connection; nested exception is java.sql.SQLException: No suitable driver

    运行项目rds_web时,出现错误提示:Could not get JDBC Connection; nested exception is java.sql.SQLException: No sui ...

  6. @Cacheable注解在spring3中的使用-实现缓存

    转:  http://blog.csdn.net/chenleixing/article/details/44815443 在软件开发中使用缓存已经有一个非常久的历史了.缓存是一种很好的设计思想,一旦 ...

  7. 出自 HTML4 规范的可用颜色字符串值列表(常用颜色名称及对应的十六进制值)

    据称由于 HTML5 没有修改专属的颜色,HTML4 的颜色都可以在 HTML5 中正确显示. 出自 HTML4 规范的可用颜色字符串值列表如下,此表来源是 http://www.lovean.com ...

  8. UE把环境变量Path改了

    为了比较个文件,装了UE. 文件比较完了,环境变量也被改了. 改还不是写添加式的改,是写覆盖式的改. 搞得ant都起不动了,一看Path被改的那样(C:\hy\soft\ultraedit\Ultra ...

  9. Java enum枚举的使用方法

    一. 出现背景: 在JDK1.5之前,我们定义常量是这种:public static final String RED = "RED"; 在JDK1.5中增加了枚举类型,我们能够把 ...

  10. hdu 5444 Elven Postman(长春网路赛——平衡二叉树遍历)

    题目链接:pid=5444http://">http://acm.hdu.edu.cn/showproblem.php?pid=5444 Elven Postman Time Limi ...