【BZOJ4519】[Cqoi2016]不同的最小割

Description

学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割。对于带权图来说,将所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在关于s,t的割中容量最小的割。而对冲刺NOI竞赛的选手而言,求带权图中两点的最小割已经不是什么难事了。我们可以把视野放宽,考虑有N个点的无向连通图中所有点对的最小割的容量,共能得到N(N−1)2个数值。
这些数值中互不相同的有多少个呢?这似乎是个有趣的问题。

Input

输入文件第一行包含两个数N,M,表示点数和边数。接下来M行,每行三个数u,v,w,
表示点u和点v(从1开始标号)之间有条边权值是w。
1<=N<=850 1<=M<=8500 1<=W<=100000

Output

输出文件第一行为一个整数,表示个数。

Sample Input

4 4
1 2 3
1 3 6
2 4 5
3 4 4

Sample Output

3

题解:同BZOJ2229

#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <algorithm>
using namespace std;
int n,m,cnt,S,T,ans;
int to[20000],next[20000],val[20000],head[1000],d[1000];
int map[1000][1000],p[1000],pp[1000],s[1000000];
queue<int> q;
void add(int a,int b,int c)
{
to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
to[cnt]=a,val[cnt]=c,next[cnt]=head[b],head[b]=cnt++;
}
int dfs(int x,int mf)
{
if(x==T) return mf;
int k,temp=mf,i;
for(i=head[x];i!=-1;i=next[i])
{
if(d[to[i]]==d[x]+1&&val[i])
{
k=dfs(to[i],min(temp,val[i]));
if(!k) d[to[i]]=0;
val[i]-=k,val[i^1]+=k,temp-=k;
if(!temp) break;
}
}
return mf-temp;
}
int bfs()
{
while(!q.empty()) q.pop();
memset(d,0,sizeof(d));
d[S]=1,q.push(S);
int i,u;
while(!q.empty())
{
u=q.front(),q.pop();
for(i=head[u];i!=-1;i=next[i])
{
if(!d[to[i]]&&val[i])
{
d[to[i]]=d[u]+1;
if(to[i]==T) return 1;
q.push(to[i]);
}
}
}
return 0;
}
void solve(int l,int r)
{
if(l==r) return ;
S=p[l],T=p[r];
int i,j,h1=l,h2=r,mf=0;
for(i=0;i<cnt;i+=2) val[i]=val[i^1]=val[i]+val[i^1]>>1;
while(bfs()) mf+=dfs(S,1<<30);
for(i=1;i<=n;i++) if(d[i])
for(j=1;j<=n;j++) if(!d[j])
map[i][j]=map[j][i]=min(map[i][j],mf);
for(i=l;i<=r;i++)
{
if(d[p[i]]) pp[h1++]=p[i];
else pp[h2--]=p[i];
}
for(i=l;i<=r;i++) p[i]=pp[i];
solve(l,h2),solve(h1,r);
}
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
n=rd(),m=rd();
int i,j,a,b,c,pre;
memset(head,-1,sizeof(head));
memset(map,0x3f,sizeof(map));
for(i=1;i<=m;i++) a=rd(),b=rd(),c=rd(),add(a,b,c);
for(i=1;i<=n;i++) p[i]=i;
solve(1,n);
for(i=1;i<=n;i++) for(j=i+1;j<=n;j++) s[++s[0]]=map[i][j];
sort(s+1,s+s[0]+1);
for(pre=-1,i=1;i<=s[0];i++) if(s[i]>pre) pre=s[i],ans++;
printf("%d",ans);
return 0;
}

【BZOJ4519】[Cqoi2016]不同的最小割 最小割树的更多相关文章

  1. [bzoj4519][Cqoi2016]不同的最小割_网络流_最小割_最小割树

    不同的最小割 bzoj-4519 Cqoi-2016 题目大意:题目链接. 注释:略. 想法: 我们发现这和最小割那题比较像. 我们依然通过那个题说的办法一样,构建最小割树即可. 接下来就是随便怎么处 ...

  2. scu - 3254 - Rain and Fgj(最小点权割)

    题意:N个点.M条边(2 <= N <= 1000 , 0 <= M <= 10^5),每一个点有个权值W(0 <= W <= 10^5),现要去除一些点(不能去掉 ...

  3. 算法笔记--最大流和最小割 && 最小费用最大流 && 上下界网络流

    最大流: 给定指定的一个有向图,其中有两个特殊的点源S(Sources)和汇T(Sinks),每条边有指定的容量(Capacity),求满足条件的从S到T的最大流(MaxFlow). 最小割: 割是网 ...

  4. 3532: [Sdoi2014]Lis 最小字典序最小割

    3532: [Sdoi2014]Lis Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 865  Solved: 311[Submit][Status] ...

  5. bzoj2229: [Zjoi2011]最小割(分治最小割+最小割树思想)

    2229: [Zjoi2011]最小割 题目:传送门 题解: 一道非常好的题目啊!!! 蒟蒻的想法:暴力枚举点对跑最小割记录...绝对爆炸啊.... 开始怀疑是不是题目骗人...难道根本不用网络流?? ...

  6. HDU 1394 Minimum Inversion Number(最小逆序数 线段树)

    Minimum Inversion Number [题目链接]Minimum Inversion Number [题目类型]最小逆序数 线段树 &题意: 求一个数列经过n次变换得到的数列其中的 ...

  7. POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心)-动态规划做法

    POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心) Description Farmer John ...

  8. 紫书 例题 11-2 UVa 1395(最大边减最小边最小的生成树)

    思路:枚举所有可能的情况. 枚举最小边, 然后不断加边, 直到联通后, 这个时候有一个生成树.这个时候,在目前这个最小边的情况可以不往后枚举了, 可以直接更新答案后break. 因为题目求最大边减最小 ...

  9. BZOJ4519 CQOI2016不同的最小割(最小割+分治)

    最小割树:新建一个图,包含原图的所有点,初始没有边.任取两点跑最小割,给两点连上权值为最小割的边,之后对于两个割集分别做同样的操作.最后会形成一棵树,树上两点间路径的最小值即为两点最小割.证明一点都不 ...

随机推荐

  1. 七、Ubuntu 关机或者重启

    重启命令:1.reboot2.shutdown -r now 立刻重启(root用户使用)3.shutdown -r 10 过10分钟自动重启(root用户使用)4.shutdown -r 20:35 ...

  2. 洛谷——P1186 玛丽卡

    P1186 玛丽卡 题目描述 麦克找了个新女朋友,玛丽卡对他非常恼火并伺机报复. 因为她和他们不住在同一个城市,因此她开始准备她的长途旅行. 在这个国家中每两个城市之间最多只有一条路相通,并且我们知道 ...

  3. 使用aspnet_regsql.exe 创建ASPState数据库,用来保存session会话

    使用aspnet_regsql.exe 创建ASPState数据库,用来保存session会话   因为公司有多台服务器,所以session要保存在sql server上,因此要在数据库中建立存放se ...

  4. 在Bonobo服务器里创建Repository(库)

    新建Repository步骤如下: 点击“库”链接,进入“库管理”页面,如下图所示: 在“库管理”页面点击“创建新库”按钮,进入“创建新库”页面,如下图所示: 点击“建立”按钮,会进入“库管理”页面, ...

  5. struts_hibernate登陆范例

    开发工具:MyEclipse 6.0 ,Tomcat 5.5 ,JDK 1.5  ,MySQL 5.0 :开发准备:下载Struts 2.0和Hibernate 3.2,大家可Struts和Hiber ...

  6. 网络库libevent、libev、libuv对比

    Libevent.libev.libuv三个网络库,都是c语言实现的异步事件库Asynchronousevent library). 异步事件库本质上是提供异步事件通知(Asynchronous Ev ...

  7. Ambient Occulution

    SSAO HDAO normal pair 求一个谷 SAO 重建normal HBAO input depth,normal 这几个都是screen space的ao

  8. 转:GRADLE构建最佳实践

    转自: http://www.figotan.org/2016/04/01/gradle-on-android-best-practise/#section-2 随着谷歌对Eclipse的无情抛弃和对 ...

  9. VC++动态链接库(DLL)编程深入浅出(一)

    1.概论 先来阐述一下DLL(Dynamic Linkable Library)的概念,你可以简单的把DLL看成一种仓库,它提供给你一些可以直接拿来用的变量.函数或类.在仓库的发展史上经历了“无库-静 ...

  10. linux驱动开发重点关注内容--摘自《嵌入式Linux驱动模板精讲与项目实践》

    本文摘自本人拙著 <嵌入式Linux驱动模板精讲与项目实践> 初步看起来Linux设备驱动开发涉及内容非常多,而须要实现驱动的设备千差万别.事实上做一段时间驱动之后回首看来主要就是下面几点 ...