题目戳这里

一句话题意:





有n个点,m条边的有向图,最多可以把k条边变为0,求从起点到终点最短距离。





Solution





首先看到这题目,感觉贼难,看起来像DP,貌似也有大佬这么做,但鉴于本蒟蒻思维能力有限,经过大佬点拨后拿出了失传已久的绝技——分层图!(废话真多).

那么我们就可以愉快地建图了,根据题意,建出k+1层图,每条边从上一层到下一层的边权为0,每次从一层到下一层,就相当于用了一次0边,从0层起点到k层终点,正好用了k次。另外需要注意的是,因为边数太多,裸的SPFA会被卡。





Coding

#include<bits/stdc++.h>
using namespace std;
const int N = 1e5;
struct road
{
int to,next,w;
}e[N*50+5];
int n,m,s,t,head[N*10+5],cnt,k;
inline int read()
{
int X=0,w=1; char ch=0;
while(ch<'0' || ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0' && ch<='9') X=(X<<3)+(X<<1)+ch-'0',ch=getchar();
return X*w;
}
void add(int x,int y,int w)
{
cnt++;
e[cnt].w=w;
e[cnt].to=y;
e[cnt].next=head[x];
head[x]=cnt;
}
int vis[N*10+5],dis[N*10+5];
void Dijkstra()
{
memset(dis,0x3f,sizeof(dis));
dis[s]=0;
priority_queue<pair<int,int>,vector<pair<int,int> >,greater<pair<int,int> > > q;
q.push(make_pair(0,s));
while(!q.empty())
{
int u=q.top().second;
q.pop();
if(!vis[u])
{
vis[u]=1;
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].to;
if(dis[v]>dis[u]+e[i].w)
{
dis[v]=dis[u]+e[i].w;
q.push(make_pair(dis[v],v));
}
}
}
}
}
int main()
{
cin>>n>>m>>k>>s>>t;
s++,t++;
for(int i=1;i<=m;i++)
{
int u,v,w;
u=read(),v=read(),w=read();
u++,v++;
for(int j=0;j<=k;j++)
{
add(u+j*n,v+j*n,w);
add(v+j*n,u+j*n,w);
}
for(int j=1;j<=k;j++)
{
add(u+(j-1)*n,v+j*n,0);
add(v+(j-1)*n,u+j*n,0);
}
}
for(int i=1;i<=k;i++)
add(t+(i-1)*n,t+i*n,0);
Dijkstra();
cout<<dis[t+k*n];
return 0;
}

洛谷 4568 [JLOI2011] 飞行路线的更多相关文章

  1. 洛谷 P4568 [JLOI2011]飞行路线 解题报告

    P4568 [JLOI2011]飞行路线 题目描述 Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在\(n\)个城市设有业务,设这些城市分别标记为0到\(n−1\ ...

  2. 洛谷 P4568 [JLOI2011]飞行路线 题解

    P4568 [JLOI2011]飞行路线 题目描述 Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在\(n\)个城市设有业务,设这些城市分别标记为\(0\)到\( ...

  3. 洛谷 P4568 [JLOI2011]飞行路线

    题目描述 Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的 ...

  4. [洛谷P4568][JLOI2011]飞行路线

    题目大意:最短路,可以有$k$条边无费用 题解:分层图最短路,建成$k$层,层与层之间的边费用为$0$ 卡点:空间计算出错,建边写错 C++ Code: #include <cstdio> ...

  5. Luogu 2939 [USACO09FEB]改造路Revamping Trails && Luogu 4568 [JLOI2011]飞行路线

    双倍经验 写这两题之前被大佬剧透了呜呜呜. 分层图+最短路. 因为有$k$次机会能够把路径的费用变为$0$,我们可以建$k + 1$层图,对于每一层图我们把原来的边权和双向边连到上面去,而对于层与层之 ...

  6. [JLOI2011]飞行路线 不同的算法,不同的悲伤

    题目 :BZOJ2763 洛谷P4568 [JLOI2011]飞行路线 一道最短路的题目,想想写个题解也不错(好久没写题解了_(:з」∠)_) 然后这道题中心思路是dijikstra处理最短路,所以没 ...

  7. 【BZOJ2763/洛谷p4563】【分层图最短路】飞行路线

    2763: [JLOI2011]飞行路线 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4630  Solved: 1797[Submit][Stat ...

  8. 分层图最短路【bzoj2763】: [JLOI2011]飞行路线

    bzoj2763: [JLOI2011]飞行路线 Description Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在n个城市设有业务,设这些城市分别标记为0 ...

  9. [JLOI2011]飞行路线(分层图)

    [JLOI2011]飞行路线 题目描述 Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在 n 个城市设有业务,设这些城市分别标记为 0 到 n−1 ,一共有 m ...

随机推荐

  1. noip2017集训测试赛(四)Problem A: fibonacci

    题目大意 给你一个序列\(a_1, a_2, ..., a_n\). 我们令函数\(f(n)\)表示斐波那契数列第\(n\)项的值. 总共\(m\)个操作, 分为以下两种: 将\(x \in [L, ...

  2. 2016北京集训测试赛(十四)Problem A: 股神小L

    Solution 考虑怎么卖最赚钱: 肯定是只卖不买啊(笑) 虽然说上面的想法很扯淡, 但它确实能给我们提供一种思路, 我们能不买就不买; 要买的时候就买最便宜的. 我们用一个优先队列来维护股票的价格 ...

  3. git——简易指南

    Git对于我来说,只知道是一个版本控制器,类似于乌龟的svn.其中也仅仅会几个常的命令,比如说“更新git pull”.“提交git push”等等,因为记得当初使用的时候,师傅告诉我,对于你不懂这个 ...

  4. Taskaffinity属性使用小结

    TaskAffinity属性小结 最近在项目中用到了TaskAffinity属性,发现这个还是挺有意思,可以用来控制activity所属的任务栈.但同时只设置这一个属性又是不能完成功能的,需要与其它属 ...

  5. 百度 api 测试 & python

    ''' 一.文字转语音api,树莓派天气闹钟爬取实时天气数据转换为语音,设置树莓派计划任务 ''' from aip import AipSpeech import requests import r ...

  6. eclipse离线安装插件过程

    离线安装插件: 1. help -> install New Softe.. 2. 打开安装插件界面 最后点击,next, 同意事项,重启eclipse.

  7. 【Python】导入类

    导入单个类 随着不断添加类,可能会使文件变得很长,那么此时,需要将类存储在模块中,然后在主程序导入类即可 book.py class Book(): '''模拟一本书''' def __init__( ...

  8. Centos7 安装 Maven 3.5.*

    下载 Apache Maven 访问 Maven官方网站,打开后找到下载链接,如下: 解压 tar zxvf apache-maven-3.5.3-bin.tar.gz 添加环境变量 打开 /etc/ ...

  9. swiper-demo1

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  10. Lua学习二----------Lua的基本语法

    © 版权声明:本文为博主原创文章,转载请注明出处 Lua基本语法: 1.--表示单行注释 2.--[[--]]表示多行注释 3.Lua区分大小写 4.Lua中变量默认是全局变量,除非用local显式声 ...