浅谈树状数组与线段树:https://www.cnblogs.com/AKMer/p/9946944.html

题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3110

外层一个权值线段树,内层一个位置线段树。对于外层权值线段树上的结点\(p\),它所属的内层线段树上记录每个点上有多少个值在外层的\(l,r\)内。

对于加数,直接把外层线段树权值区间包涵要加的权值的所有点所属的内层线段树的区间\(l,r\)加一。

对于查询,直接在外层线段树上二分查询即可。

时间复杂度:\(O(nlog^2n)\)

空间复杂度:\(O(nlog^2n)\)

代码如下:

#include <cstdio>
using namespace std;
typedef long long ll; const int maxn=5e4+5,maxsz=1.28e7; int n,m; int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
} struct pos_segment_tree {
int tot;
ll sum[maxsz];
int ls[maxsz],rs[maxsz],tag[maxsz]; void add(int &p,int l,int r,int L,int R) {
if(!p)p=++tot;sum[p]+=R-L+1;
if(L<=l&&r<=R) {tag[p]++;return;}
int mid=(l+r)>>1;
if(R<=mid)add(ls[p],l,mid,L,R);
else if(L>mid)add(rs[p],mid+1,r,L,R);
else add(ls[p],l,mid,L,mid),add(rs[p],mid+1,r,mid+1,R);
} ll query(int p,int l,int r,int L,int R) {
if(L<=l&&r<=R)return sum[p];
int mid=(l+r)>>1;ll res=1ll*tag[p]*(R-L+1);
if(R<=mid)res+=query(ls[p],l,mid,L,R);
else if(L>mid)res+=query(rs[p],mid+1,r,L,R);
else res+=query(ls[p],l,mid,L,mid)+query(rs[p],mid+1,r,mid+1,R);
return res;
}
}T_inside;//标记永久化是为了卡常 struct val_segment_tree {
int rt[maxn<<2]; void change(int p,int l,int r,int pos,int L,int R) {
while(1) {
T_inside.add(rt[p],1,n,L,R);
if(l==r)break;int mid=(l+r)>>1;
if(pos<=mid)p<<=1,r=mid;
else p=p<<1|1,l=mid+1;
}
} int query(int p,int l,int r,int L,int R,int rk) {
while(l!=r) {
int mid=(l+r)>>1;
ll tmp=T_inside.query(rt[p<<1|1],1,n,L,R);
if(tmp>=rk)p=p<<1|1,l=mid+1;
else p=p<<1,r=mid,rk-=tmp;
}
return l;
}
}T_out;//之所以这样写是为了卡常 int main() {
n=read(),m=read();
for(int i=1;i<=m;i++) {
int opt=read(),l=read(),r=read(),k=read();
if(opt==1)T_out.change(1,1,n,k,l,r);
else printf("%d\n",T_out.query(1,1,n,l,r,k));
}
return 0;
}

BZOJ3110:[ZJOI2013]K大数查询的更多相关文章

  1. BZOJ3110[Zjoi2013]K大数查询(树状数组+整体二分)

    3110 [Zjoi2013]K大数查询 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a ...

  2. BZOJ3110 [Zjoi2013]K大数查询 树套树 线段树 整体二分 树状数组

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3110 题意概括 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位 ...

  3. BZOJ3110: [Zjoi2013]K大数查询

    喜闻乐见的简单树套树= =第一维按权值建树状数组,第二维按下标建动态开点线段树,修改相当于第二维区间加,查询在树状数组上二分,比一般的线段树还短= =可惜并不能跑过整体二分= =另外bzoj上的数据有 ...

  4. [BZOJ3110][ZJOI2013]K大数查询(整体二分)

    BZOJ Luogu sol 整体二分,其实很简单的啦. 对所有询问二分一个答案mid,把所有修改操作中数字大于mid的做一个区间覆盖(区间加1) 查询就是区间查询 然后左右分一分即可 注意是第k大 ...

  5. BZOJ3110[Zjoi2013]K大数查询——权值线段树套线段树

    题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是 ...

  6. bzoj3110: [Zjoi2013]K大数查询 【树套树,标记永久化】

    //========================== 蒟蒻Macaulish:http://www.cnblogs.com/Macaulish/  转载要声明! //=============== ...

  7. bzoj3110 [Zjoi2013]K大数查询——线段树套线段树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3110 外层权值线段树套内层区间线段树: 之所以外层权值内层区间,是因为区间线段树需要标记下传 ...

  8. bzoj3110: [Zjoi2013]K大数查询 【cdq分治&树套树】

    模板题,折腾了许久. cqd分治整体二分,感觉像是把询问分到答案上. #include <bits/stdc++.h> #define rep(i, a, b) for (int i = ...

  9. BZOJ3110:[ZJOI2013]K大数查询(整体二分)

    Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位 ...

  10. 【树套树】bzoj3110 [Zjoi2013]K大数查询

    题解很多,实现起来以外地简洁.内层的区间线段树上用了标记永久化. #include<cstdio> using namespace std; #define N 50001 struct ...

随机推荐

  1. caffe-ubuntu1604-gtx850m-i7-4710hq----bvlc_reference_caffenet.caffemodel

    bvlc_reference_caffenet.caffemodel --- name: BAIR/BVLC CaffeNet Model caffemodel: bvlc_reference_caf ...

  2. Django之便签生成

    myblog_tag.py #coding:utf-8 __author__ = 'similarface'from django import template register=template. ...

  3. nginx支持pathinfo模式

    很久不使用apache了,渐渐对apache感到陌生,因为朋友有个ZendFramework框架从apache移到nginx下,需要pathinfo模式支持.网上海搜于是开始搜索nginx+pathi ...

  4. 部署mongodb中需要注意的调参

    部署mongodb的生产服务器,给出如下相关建议: 使用虚拟化环境: 系统配置 1)推荐RAID配置 RAID(Redundant Array of Independent Disk,独立磁盘冗余阵列 ...

  5. mongo 介绍

    [介绍]:MongoDB 是由C++语言编写的,是一个基于分布式文件存储的开源数据库系统.在高负载的情况下,添加更多的节点,可以保证服务器性能.MongoDB 旨在为WEB应用提供可扩展的高性能数据存 ...

  6. 【BZOJ4276】[ONTAK2015]Bajtman i Okrągły Robin 线段树优化建图+费用流

    [BZOJ4276][ONTAK2015]Bajtman i Okrągły Robin Description 有n个强盗,其中第i个强盗会在[a[i],a[i]+1],[a[i]+1,a[i]+2 ...

  7. EasyRTMP+EasyDSS实现一套完整的紧急视频回传直播与存储回放方案

    需求来源 紧急视频回传云端:即拍即传.云端存储.紧急录像.云拍云录!这些需求现在可能对于我们来说比较远,大部分也是在行业中才会用到,但相信在不就的将来肯定会落地到每个人的手中,因为这是一个自我保护.自 ...

  8. 九度OJ 1010:A + B (字符串处理)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:7166 解决:3646 题目描述: 读入两个小于100的正整数A和B,计算A+B. 需要注意的是:A和B的每一位数字由对应的英文单词给出. ...

  9. pip安装时使用国内源加快下载速度

    国内源: 清华:https://pypi.tuna.tsinghua.edu.cn/simple 阿里云:http://mirrors.aliyun.com/pypi/simple/ 中国科技大学 h ...

  10. Gemini.Workflow 双子工作流入门教程二:定义流程:流程节点介绍

    简介: Gemini.Workflow 双子工作流,是一套功能强大,使用简单的工作流,简称双子流,目前配套集成在Aries框架中. 下面介绍本篇教程:流程定义:流程节点属性. 流程节点: 左侧是节点工 ...