感谢这道题让我复习了一遍线代,还学习了一些奇奇怪怪的数论。

二项展开以后根号部分抵消了

显然有

所以要求的答案是

如果n比较小的话,可以直接对二项式快速幂,但是这题n很大

这个问题和矩阵的特征值以及数列递推有奇怪的联系

广义的fibonacci数列的形式如下

写成矩阵形式就是

有一个奇怪的结论:

其中lambda1,lambda2是递推矩阵的特征值,此处只讨论lambda1!=lambda2的情况。

这个奇怪的结论其实很容易证明,

根据以上结果,利用矩阵的数乘和分配律然后归纳就可以完整得到结论

令lambda1=p,lambda2=q,可以求出a和b,答案就在递推的第n项

然后通过找循环节减小n

m是素数时一般的做法:http://blog.csdn.net/ACdreamers/article/details/25616461

费马小定理和欧拉准则不明觉厉。。。

此题所有的m循环节都小,直接暴力,然后记忆化

lambda1!=lambda2,所以A一定可以对角化,而A^n就可以表示为

对应特征值

并且有

所以对A矩阵快速幂以后算出迹减1就是答案

#include<bits/stdc++.h>
using namespace std;
typedef long long ll; struct Matrix
{
int e[][];
int* operator[](int p){
return e[p];
}
}; ll Mod;
Matrix operator *(Matrix &A, Matrix &B)
{
Matrix R;
for(int i = ; i < ; i++){
for(int j = ; j < ; j++){
R[i][j] = ;
for(int k = ; k < ; k++){
R[i][j] = (R[i][j] + (ll)A[i][k]*B[k][j]+Mod)%Mod;
}
}
}
return R;
} Matrix Matrix_pow(Matrix A,ll p)
{
Matrix R;
for(int i = ; i < ; i++){
for(int j = ; j < ; j++){
R[i][j] = i==j?:;
}
}
while(p){
if(p&) R = R*A;
A = A*A;
p>>=;
}
return R;
} ll qPow(ll a,ll p,ll mod)
{
ll ret = ;
while(p){
if(p&) ret = (ret*a)%mod;
a = (a*a)%mod;
p >>= ;
}
return ret;
} const int maxm = +;
int r[maxm],f[maxm]; int main()
{
//freopen("in.txt","r",stdin);
int T, kas = ; scanf("%d",&T);
while(T--){
ll x; scanf("%I64d%I64d",&x,&Mod);
if(!r[Mod]){
f[] = ; f[] = ;
for(int i = ; ;i++){
f[i] = (10LL*f[i-]-f[i-]+Mod)%Mod;
if(f[i] == f[] && f[i-] == f[]){ r[Mod] = i-; break; }
}
}
Matrix A;
A[][] = %Mod; A[][] = Mod-; A[][] = ; A[][] = ;
auto ans = Matrix_pow(A,(qPow(,x,r[Mod])+)%r[Mod]);
printf("Case #%d: %d\n",++kas,(ans[][]+ans[][]+Mod-)%Mod);
}
return ;
}

HDU 5451 Best Solver(fibonacci)的更多相关文章

  1. HDU - 5451 Best Solver(循环节+矩阵快速幂)

    Best Solver The so-called best problem solver can easily solve this problem, with his/her childhood ...

  2. HDU 5938 Four Operations(四则运算)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...

  3. HDU 5775 Bubble Sort(冒泡排序)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...

  4. HDU 1711 Number Sequence(数列)

    HDU 1711 Number Sequence(数列) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Ja ...

  5. HDU 1005 Number Sequence(数列)

    HDU 1005 Number Sequence(数列) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Jav ...

  6. 第2章 数字之魅——斐波那契(Fibonacci)数列

    斐波那契(Fibonacci)数列 问题描述 递归算法: package chapter2shuzizhimei.fibonacci; /** * Fibonacci数列递归求解 * @author ...

  7. 2.裴波那契(Fibonacci)数列

    裴波那契(Fibonacci)数列 f(n)= ⎧⎩⎨0,1,f(n−1)+f(n−2),n =0n =1n>1 求裴波那契数列的第n项.(题目来自剑指offer) 1.递归解法,效率很低的解法 ...

  8. python的生成器(斐波拉契数列(Fibonacci))

    代码: 函数版本: #斐波拉契数列(Fibonacci) def fib(max): n=0 a,b=0,1 while n < max: a,b = b,a+b n = n+1 return ...

  9. HDU 1176 免费馅饼 (动态规划)

    HDU 1176 免费馅饼 (动态规划) Description 都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼.说来gameboy的人品实在是太好了,这馅饼 ...

随机推荐

  1. 廖雪峰的java教程

    F:\教程\0-免费下载-廖雪峰 公司电脑地址: G:\学习中\廖雪峰的java教程 廖雪峰java课程地址: https://www.feiyangedu.com/category/JavaSE 0 ...

  2. Spring入门第九课

    使用外部属性文件 在配置文件里面配置Bean时,有时需要在Bean的配置里面混入系统部署的细节信息(例如:文件路径,数据源配置信息等)而这些部署细节实际上需要和Bean配置相分离. Spring提供了 ...

  3. SpringMVC使用fastjson自定义Converter支持返回jsonp格式(转)

    import com.alibaba.fastjson.JSON; import com.alibaba.fastjson.serializer.SerializerFeature; import c ...

  4. 2. nmap扫描神器总结

    -----------------nmap(选项)(参数)------------------O:激活操作探测: -P0:值进行扫描,不ping主机: -PT:是同TCP的ping: -sV:探测服务 ...

  5. Spring Boot错误errMsg: "request:ok"

    在把评论写到数据库并且动态刷新评论区的时候,有时候正常写入,有时候就会有“request:ok”的的错误出现,错误信息如下: data: {timestamp: , error: "Inte ...

  6. CQL查Cassandra条目数中的小问题

    用查询语句:SELECT count(*) FROM tablename 返回类型是ResultSet,得到tablename中所有条目数 ResultSet类型可以直接用index访问:Result ...

  7. Git 分支管理 BUG分支

    BUG分支  廖雪峰 软件开发中,bug就像家常便饭一样.有了bug就需要修复, 在Git中,由于分支是如此的强大,所以, 每个bug都可以通过一个新的临时分支来修复,修复后,合并分支,然后将临时分支 ...

  8. codeforces757F Team Rocket Rises Again【支配树+倍增+拓扑+spfa】

    先跑spfa求出最短路构成的DAG,然后在DAG上跑出支配树dfs出size取max即可 关于支配树,因为是DAG,支配点就是入点在支配树上的lca,所以一边拓扑一边预处理倍增,然后用倍增求lca # ...

  9. IT兄弟连 Java语法教程 运行Java程序

    编译好Java字节码文件后,接下来就应该运行Java程序了. 运行Java程序需要使用JDK中提供的java命令,因为已经把java命令所在的路径添加到了系统的Path环境变量中,因此现在可以直接使用 ...

  10. 十一、python的高级语法与用法

    一.枚举其实是一个类 现实世界中的“类型”,在计算机世界中如何描述? 常见的 1)用1.2.3..等数字表示类型 2)较好的做法是用字典表示 3)最好的是使用枚举 # coding=utf-8 fro ...