易得 $\sum\limits_{g=1}^{n} g \sum\limits_{k=1}^{n} \mu(k) \lfloor\frac{n}{gk}\rfloor \lfloor\frac{n}{gk}\rfloor $

记 \(T=gk\) 枚举 \(T\) ,注意这里既然满足 \(T=gk\) 要保证两个乘起来确实是 \(T\) ,选择把 \(k\) 换成 $\frac{T}{g} $ .

$\sum\limits_{T=1}^{n} \lfloor\frac{n}{T}\rfloor \lfloor\frac{n}{T}\rfloor \sum\limits_{g|T} g\mu(\frac{T}{g}) $

$\sum\limits_{T=1}^{n} \lfloor\frac{n}{T}\rfloor \lfloor\frac{n}{T}\rfloor \varphi(T) $

猜了一下每次回答都是根号,可能可以,但是交上去T了。原来这个时限是200ms,太惊人了,这道题卡掉了所有其他的思路。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll; const int MAXN=1000000;
int prime[MAXN+1];
int &ptop=prime[0];
ll Phi[MAXN+1]; inline void sieve(){
const int &n=MAXN;
Phi[1]=1;
for(int i=2;i<=n;i++){
if(!Phi[i]){
ptop++;
prime[ptop]=i;
Phi[i]=i-1;
}
for(int j=1;j<=ptop;j++){
int &p=prime[j];
if(i*p>n)
break;
if(i%p){
Phi[i*p]=Phi[i]*Phi[p];
}
else{
Phi[i*p]=Phi[i]*p;
break;
}
}
}
for(int i=1;i<=n;i++){
Phi[i]+=Phi[i-1];
}
} inline ll H(int n){
ll res=0;
for(int l=1,r;l<=n;l=r+1){
int t=n/l;
r=n/t;
res+=1ll*t*t*(Phi[r]-Phi[l-1]);
}
return res;
} inline ll G(int n){
ll res=(H(n)-1ll*n*(n+1)/2)/2;
return res;
} int main() {
#ifdef Yinku
freopen("Yinku.in","r",stdin);
#endif // Yinku
sieve();
int n;
while(~scanf("%d",&n)){
if(n==0)
break;
else{
printf("%lld\n",G(n));
}
}
}

问题在哪里?莫比乌斯反演不擅长进行多次回答,观察题目的数据可能想让我们用埃筛?

回到上面的式子。


其实因为是 \(n==m\) ,上面的反演很多余,枚举 \(g\) 的时候可以发现另一个公式,但是好像复杂度也是一样的,先留着,这个也是可以用杜教筛跑出大数据,应该比反演要快(因为这样大的Phi是比上面的少的)。

易得 $\sum\limits_{g=1}^{n} g \sum\limits_{i=1}^{\lfloor\frac{n}{g}\rfloor} 2\varphi(i) - 1 $

#include<bits/stdc++.h>
using namespace std;
typedef long long ll; const int MAXN=1000000;
int prime[MAXN+1];
int &ptop=prime[0];
ll Phi[MAXN+1]; inline void sieve(){
const int &n=MAXN;
Phi[1]=1;
for(int i=2;i<=n;i++){
if(!Phi[i]){
ptop++;
prime[ptop]=i;
Phi[i]=i-1;
}
for(int j=1;j<=ptop;j++){
int &p=prime[j];
if(i*p>n)
break;
if(i%p){
Phi[i*p]=Phi[i]*Phi[p];
}
else{
Phi[i*p]=Phi[i]*p;
break;
}
}
}
for(int i=1;i<=n;i++){
Phi[i]+=Phi[i-1];
}
} inline ll s1(ll l,ll r){
return (l+r)*(r-l+1)/2;
} inline ll H(int n){
ll res=0;
for(int l=1,r;l<=n;l=r+1){
int t=n/l;
r=n/t;
res+=(2ll*Phi[t]-1)*s1(l,r);
}
return res;
} inline ll G(int n){
ll res=(H(n)-1ll*n*(n+1)/2)/2;
return res;
} int main() {
#ifdef Yinku
freopen("Yinku.in","r",stdin);
#endif // Yinku
sieve();
int n;
while(~scanf("%d",&n)){
if(n==0)
break;
else{
printf("%lld\n",G(n));
}
}
}

一切从头开始,我们学习反演还有这些东西的初衷是想要降低单次回答的复杂度,看到原来的问题:

$ G(n) = \sum\limits_{i=1}{n-1}\sum\limits_{j=i+1}{n} gcd(i,j) \(
交换求和,这个没问题:
\) G(n) = \sum\limits_{j=2}{n}\sum\limits_{i=1}{j-1} gcd(i,j) $

记 $ H(n) = \sum\limits_{i=1}^{n-1} gcd(i,n) $

原式 \(G(n) = \sum\limits_{j=2}^{n} H(j)\)

貌似 \(H(n)\) 好像似曾相识? $ H(n) = ( \sum\limits_{i=1}^{n} gcd(i,n) ) - n$

里面这个不是前几天处理过?这种 \(gcd\) 就只可能是 \(n\) 的因子:

$ H(n) = ( \sum\limits_{d|n} d \sum\limits_{i=1}^{n} [gcd(i,n)d] ) - n$

$ H(n) = ( \sum\limits_{d|n} d \sum\limits_{i=1}^{\frac{n}{d}} [gcd(i,\frac{n}{d})1] ) - n$

$ H(n) = ( \sum\limits_{d|n} d \varphi(\frac{n}{d}) ) - n$

为方便,记 $ h(n) = \sum\limits_{d|n} d \varphi(\frac{n}{d}) $

意思是这个 \(h(n)\) 可以用埃筛,那么这个问题到这里就解决了,但是会不会有线筛的做法呢?

这个 \(id*\varphi\) 狄利克雷卷积在这里处理过。

那么来一波线性的做法:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll; const int MAXN=1000000;
int prime[MAXN+1];
int &ptop=prime[0];
ll h[MAXN+1];
int pk[MAXN+1]; inline void sieve(){
const int &n=MAXN;
for(int i=2;i<=n;i++){
if(!pk[i]){
ptop++;
prime[ptop]=i;
pk[i]=i;
h[i]=i+i-1;
}
for(int j=1;j<=ptop;j++){
int &p=prime[j];
int t=i*p;
if(t>n)
break;
if(i%p){
pk[t]=pk[p];
h[t]=h[i]*h[p];
}
else{
pk[t]=pk[i]*p;
if(pk[t]==t){
h[t]=(t-i)+h[i]*p;
}else{
h[t]=h[pk[t]]*h[t/pk[t]];
}
break;
}
}
}
for(int i=1;i<=n;i++){
h[i]-=i;
}
for(int i=1;i<=n;i++){
h[i]+=h[i-1];
}
} inline ll G(int n){
ll res=h[n]-h[1];
return res;
} int main() {
#ifdef Yinku
freopen("Yinku.in","r",stdin);
#endif // Yinku
sieve();
int n;
while(~scanf("%d",&n)){
if(n==0)
break;
else{
printf("%lld\n",G(n));
}
}
}

洛谷 - SP3871 GCDEX - GCD Extreme - 莫比乌斯反演的更多相关文章

  1. 洛谷 P5518 - [MtOI2019]幽灵乐团 / 莫比乌斯反演基础练习题(莫比乌斯反演+整除分块)

    洛谷题面传送门 一道究极恶心的毒瘤六合一题,式子推了我满满两面 A4 纸-- 首先我们可以将式子拆成: \[ans=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\p ...

  2. [洛谷P1390]公约数的和·莫比乌斯反演

    公约数的和 传送门 分析 这道题很显然答案为 \[Ans=\sum_{i=1}^n\sum_{j=i+1}^n (i,j)\] //其中\((i,j)\)意味\(gcd(i,j)\) 这样做起来很烦, ...

  3. 洛谷 - P4449 - 于神之怒加强版 - 莫比乌斯反演

    https://www.luogu.org/problemnew/show/P4449 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{m} gcd(i, ...

  4. 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)

    题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...

  5. 洛谷P3455 [POI2007]ZAP-Queries (莫比乌斯反演)

    题意:求$\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)==d]$(1<=a,b,d<=50000). 很套路的莫比乌斯反演. $\sum_{i=1}^{n}\ ...

  6. 洛谷P3768 简单的数学题 莫比乌斯反演+杜教筛

    题意简述 求出这个式子 \[ \sum_{i=1}^n\sum_{j=1}^n ij(i,j) \bmod p \] 做法 先用莫比乌斯反演拆一下式子 \[ \begin{split} \sum_{i ...

  7. 洛谷P3455 [POI2007]ZAP-Queries(莫比乌斯反演)

    传送门 设$$f(k)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=k]$$ $$g(n)=\sum_{n|k}f(k)=\lfloor\frac{a}{n}\rflo ...

  8. 洛谷 - P1390 - 公约数的和 - 莫比乌斯反演 - 欧拉函数

    https://www.luogu.org/problemnew/show/P1390 求 $\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} gcd(i,j) $ ...

  9. 洛谷P3312 [SDOI2014]数表(莫比乌斯反演+树状数组)

    传送门 不考虑$a$的影响 设$f(i)$为$i$的约数和 $$ans=\sum\limits_{i=1}^n\sum\limits_{j=1}^nf(gcd(i,j))$$ $$=\sum\limi ...

随机推荐

  1. 安装protobuf可能遇到的问题

    下载protobuf-2.3.0:    http://protobuf.googlecode.com/files/protobuf-2.3.0.zip http://code.google.com/ ...

  2. tomcat 7安装

    JAVA环境安装 1.下载包 http://download.oracle.com/otn/java/jdk/6u45-b06/jdk-6u45-linux-x64.bin 2.安装 jdk-6u45 ...

  3. linux 查找最后几条数据

    tail(选项)(参数) -n<N>或——line=<N>:输出文件的尾部N(N位数字)行内容. 例如:grep 查询 2018-02-*/*.log |tail -n 5查询 ...

  4. Cisco策略路由(policy route)精解(转载)

    原文:http://www.guanwei.org/post/Cisconetwork/07/Cisco-policy-route_8621.html 注:PBR以前是CISCO用来丢弃报文的一个主要 ...

  5. 【caffe-windows】 caffe-master 之图片转换成lmdb or leveldb

    前期准备: 文件夹train:此文件夹中按类别分好子文件夹,各子文件夹里存放相应图片 文件夹test:同train,有多少类就有多少个子文件夹 trainlabels.txt : 存的是训练集的标签  ...

  6. SPOJ - GSS1&&GSS3

    GSS1 #include<cstdio> #include<iostream> #define lc k<<1 #define rc k<<1|1 u ...

  7. Javascript - ERR_CONTENT_LENGTH_MISMATCH

    不知道做了什么,有两天没有跑vue项目啦,今天突然出现加载脚本的时候出现 ERR_CONTENT_LENGTH_MISMATCH这个错误, 所以我去搜索了一下  找到如下答案  http://stac ...

  8. mac 中安装redis 以及 安装php-redis扩展过程详细记录

    1. 通过homebrew 安装 redis sodu brew install redis 2. 安装后执行开启redis,采用默认配置, 默认配置只有本地(127.0.0.1)可以访问.需要远程访 ...

  9. some base knowledge

    har类型的长度被定义为一个8位字节,这很简单. short类型的长度至少为两字节.在有些计算机上,对于有些编译程序,short类型的长度可能为4字节,或者更长. int类型是一个整数的“自然”大小, ...

  10. 常用git命令和工具

    0. ln -s src_dir  //一个参数即可在当前目录下生成一个软链接   1.git command --clone/push a branch      git clone <url ...