给一个集合,大小为n , 求所有子集的gcd 的期望和 。

期望的定义为 这个子集的最大公约数的K次方 ;

每个元素被选中的概率是等可能的

即概率 p = (发生的事件数)/(总的事件数);

总的事件数 = 2^n -1; 大小为n的集合的非空子集个数为2^n -1

期望 = p(i) *i;

= 1*p(1) + 2*p(2) + ... +n*p(n);

设x发生的事件数为 dp[x] , 则上式可化简为:

=1*dp[1]/(2^n-1) + 2*dp[2]/(2^n-1) + ... +n*dp[n]/(2^n-1);

=1/(2^n-1)*(1*dp[1] + 2*dp[2] + ... + n*dp[n]);

题目要求最后所得结果乘以 (2^n-1);

所以式子最后化简为:1*dp[1] + 2*dp[2] + ... + n*dp[n]

即问题转化为求gcd = i 的子集数

假设gcd = m*i (m = 0,1,2,3,... && m*i <= max_num)的个数为dp[i]个

那么gcd = i 的个数则为 for(int j= i + i ; j <= max_num ; j += i) dp[i]-=dp[j] ;

则期望为:dp[1] * 1^k + dp[2] * 2^k + ... dp[i] * i^k ;

 #include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <map>
#include <list>
#include <queue>
#include <stack>
#include <string>
#include <algorithm>
#include <iterator>
using namespace std;
#define MAXN 1000010
#define INF 0x3f3f3f3f
#define MOD 998244353
#define eps 1e-6
#define LL long long
int num[MAXN];
LL dp[MAXN];
//dp[i] = 2^x -1 ; gcd = n*i;
//for(int j = i ; j <= max_num ; j += i) dp[i] -= dp[j];
LL qpow(LL x , LL k)
{
LL res=;
while(k)
{
if(k & ) res = res * x % MOD;
x = x * x % MOD;
k >>= ;
}
return res;
} int main()
{
int T;
int n,k;
LL ans;
scanf("%d",&T);
while(T--)
{
scanf("%d %d",&n,&k);
int x;
int max_num = ;
int cunt = ;
memset(num , , sizeof(num));
memset(dp , , sizeof(dp));
for(int i = ; i < n ; i ++)
{
scanf("%d",&x);
num[x] ++;
max_num = max(x , max_num);
} ans = ;
for(int i = max_num ; i >= ; i --)
{
cunt = ;
dp[i] = ;
for(int j = i ; j <= max_num ; j += i)
{
cunt += num[j];
if(j > i) dp[i] = (dp[i] - dp[j] + MOD) % MOD;
}
dp[i] = (dp[i] + qpow( , cunt) - + MOD) % MOD;
ans = (ans + (dp[i] * qpow(i , k)) % MOD ) % MOD;
}
printf("%d\n",(int)ans);
}
return ;
}

Zoj 3868 GCD Expectation的更多相关文章

  1. zoj.3868.GCD Expectation(数学推导>>容斥原理)

    GCD Expectation Time Limit: 4 Seconds                                     Memory Limit: 262144 KB    ...

  2. ZOJ 3868 GCD Expectation (容斥+莫比乌斯反演)

    GCD Expectation Time Limit: 4 Seconds     Memory Limit: 262144 KB Edward has a set of n integers {a1 ...

  3. ACM学习历程—ZOJ 3868 GCD Expectation(莫比乌斯 || 容斥原理)

    Description Edward has a set of n integers {a1, a2,...,an}. He randomly picks a nonempty subset {x1, ...

  4. zoj[3868]gcd期望

    题意:求n个数组成的集合的所有非空子集的gcd的期望 大致思路:对于一个数x,设以x为约数的数的个数为cnt[x],所组成的非空集合个数有2^cnt[x]-1个,这其中有一些集合的gcd是x的倍数的, ...

  5. ZOJ 3868 - Earthstone: Easy Version

    3868 - Earthstone: Easy Version Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld ...

  6. ZOJ 3846 GCD Reduce//水啊水啊水啊水

    GCD Reduce Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge You are given a sequ ...

  7. 数学+高精度 ZOJ 2313 Chinese Girls' Amusement

    题目传送门 /* 杭电一题(ACM_steps 2.2.4)的升级版,使用到高精度: 这次不是简单的猜出来的了,求的是GCD (n, k) == 1 最大的k(1, n/2): 1. 若n是奇数,则k ...

  8. Help Me Escape (ZOJ 3640)

    J - Help Me Escape Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:32768KB ...

  9. ZOJ 3597 Hit the Target! (线段树扫描线 -- 矩形所能覆盖的最多的点数)

    ZOJ 3597 题意是说有n把枪,有m个靶子,每把枪只有一发子弹(也就是说一把枪最多只能打一个靶子), 告诉你第 i 把枪可以打到第j个靶, 现在等概率的出现一个连续的P把枪,在知道这P把枪之后,你 ...

随机推荐

  1. 如何屏蔽Button setClickable与setEnabled

    今天想让按键暂时无效,满足一定条件下才可以被用户按到.最初以为是setClickable,谁知搞错了.请看手册: 复制代码代码如下: public void setClickable (boolean ...

  2. 自定义toast功能

    http://download.csdn.net/detail/caryt/8105031

  3. 利用AWS简单存储服务(S3)托管网站

    1.首先建立Storage Bucket存储桶,名为网站域名: 2.在[属性]中选择启用网站托管或重定向到另一主机,即可. 3.官方参考文档:https://docs.aws.amazon.com/z ...

  4. java实现的可以无限级别添加子节点的菜单树

    网上大部分菜单树,都是单独用js代码来实现的,这样做的缺点是:用户无法动态的设置菜单项,比如,超级管理员可能需要根据每个用户的权限,赋予他们不同的系统功能,不同的功能对应着不同数量的菜单项. 对于此问 ...

  5. 将decimal类型的数值后面的0和.号去掉

    今天在群里面看到有朋友在问如下的需求,想到以前在写项目时也遇到这种处理数值的需求,所以写一个例子贴在博客里. 需求:在许多显示货币值时,可能需要截取掉后面的0,显示小数值或者整型值. 举例:(1)数据 ...

  6. Angularjs总结(一)表单验证

    常用的表单验证1.必须字段html5特性 增加required <input type="text" required /> 2.最小长度和最大长度 <input ...

  7. OC加强-day01

    #pragma mark - 00 知识回顾 1.@property + 类型 + 属性名 :执行的结果 1>在类的.m里面生成一个_属性名的属性 2>生成 _属性名 这个属性的set/g ...

  8. c#中用DirectShow实现媒体播放器的核心(1) DirectShow简介

    用.net做多媒体开发的似乎不多,所以网上资源也少,看的人更少.不过我的博客上居然还有几位在等新文章的人,有点出乎我的意料了.目前我已不再从事多媒体相关的工作,加入新公司至今都忙到吐血,再加上害怕水平 ...

  9. C#中如何正确的操作字符串?

    字符串应该是所有编程语言中使用最频繁的一种基础数据类型.如果使用不慎,我们就会为一次字符串的操作所带来的额外性能开销而付出代价.本条建议将从两个方面来探讨如何规避这类性能开销: 1. 确保尽量少的装箱 ...

  10. 生产者与消费者(三)---BlockingQueue

    前面阐述了实现生产者与消费者问题的两种方式:wait() / notify()方法 和 await() / signal()方法,本文继续阐述多线程的经典问题---生产者与消费者的第三种方式:Bloc ...