Given any $k$-tupel of linearly independent vectors $X$ as above, there exists a $k$-tuple $Y$ biorthognal to it. If $k=n$, this $Y$ is unique.

解答: Since $$\bex \rank(X^*X)=\rank(X)=k, \eex$$ there exists an unique $A\in M_k$ such that $$\bex X^*XA=I_k. \eex$$ Take $Y=XA$, we are completed.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.1.1的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. vim插件:latex-suite 使用方法

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4030057.html 零.操作快捷键:对于<++>的块,按下ctrl+j即可快速 ...

  2. shell环境

    1 引言 一个进程运行在shell环境中,理解进程运行的环境是十分重要的.环境影响着进程的行为,利用环境提供的便利,可以极大地提高开发效率.本节深入讨论shell中与进程有关的环境问题,包括命令行参数 ...

  3. PHOTOSHOP 制作虚线和实线

    1.制作实线可以直接用直线工具,选择合适的粗细大小. 2. 制作虚线首先要用钢笔或者绘图工具画出所需要的形状,如弧线,圆形等等     然后在路径面板中用画笔描边,画笔需要提前设置好粗细和间距,用方形 ...

  4. PHP中0、空、null和false的总结

    php中很多人还不懂php中 0 , '' , null 和 false 之间的区别,这些区别有时会影响到数据判断的正确性和安全性,给程序的测试运行造成很多麻烦.另外在面试题中也会遇到这些问题,如下: ...

  5. mysql触发器的例子--插入前更新数据

    本文介绍下,一个mysql触发器的例子,在数据插入前更新相关内容,有需要的朋友参考下. mysql触发器的例子,如下: view source print? 001 mysql> CREATE  ...

  6. Corosync+Pacemaker+DRBD+MySQL 实现高可用(HA)的MySQL集群

    大纲一.前言二.环境准备三.Corosync 安装与配置四.Pacemaker 安装与配置五.DRBD 安装与配置六.MySQL 安装与配置七.crmsh 资源管理 推荐阅读: Linux 高可用(H ...

  7. Hbase实例

    import java.io.IOException; import java.util.ArrayList; import java.util.List; import org.apache.had ...

  8. call()和apply()的区别

    var a = function(a,b){ console.log(a+b); }, b = { c:5, d:3 }; a.call(b,1,2); a.apply(b,[1,2]); a.cal ...

  9. 在MAC中安装Compass的方法 (转)

    在MAC中通过gem命令安装compass时会出异常,原因是compass版本更新了,一些运行时所用到的依赖软件的版本没能得到更新,故而出现错误.例如,用以下命令安装compass: $ gem in ...

  10. 如何创建phpinfo查看php信息?

    创建一个简单的文本文档并命名为phpinfo.php   代码如下: <?php phpinfo(); ?>   将上面的代码写入并保存该文档,通过浏览器访问这个文件即可显示PHP信息