Given any $k$-tupel of linearly independent vectors $X$ as above, there exists a $k$-tuple $Y$ biorthognal to it. If $k=n$, this $Y$ is unique.

解答: Since $$\bex \rank(X^*X)=\rank(X)=k, \eex$$ there exists an unique $A\in M_k$ such that $$\bex X^*XA=I_k. \eex$$ Take $Y=XA$, we are completed.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.1.1的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. TweenMax动画库学习(三)

    目录               TweenMax动画库学习(一)            TweenMax动画库学习(二)            TweenMax动画库学习(三)           ...

  2. memcached全面剖析--2

    理解memcached的内存存储 下面是<memcached全面剖析>的第二部分. 发表日:2008/7/9 作者:前坂徹(Toru Maesaka) 原文链接:http://gihyo. ...

  3. nodejs+socketio+redis实现前端消息实时推送

    1. 后端部分 发送redis消息 可以参考此篇实现(直接使用Jedis即可) http://www.cnblogs.com/binyue/p/4763352.html 2.后端部分: 接收redis ...

  4. MySQL数据库远程访问的权限

    GRANT ALL PRIVILEGES ON *.* TO 'user'@'%'IDENTIFIED BY 'passwd' WITH GRANT OPTION;

  5. hdu 5646 DZY Loves Partition 二分+数学分析+递推

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=5646 题意:将n分成k个正整数之和,要求k个数全部相同:并且这k个数的乘积最大为多少?结果mod 1e^9 ...

  6. git reflog 和git log :no branch git 提交方式

    git reflog 和git log的区别,外加git cherry-pick的一种用法 git reflog 可以查看所有分支的所有操作记录(包括(包括commit和reset的操作),包括已经被 ...

  7. 在使用Fake framework的时候,为什么有一些函数没有生产mock呢?

    在使用Visual studio 2012 的Fake framework 做单元测试的时候,你会发现有一些函数没有生产Stub 或者 Shim的版本,这可能是由于Fake的一些限制导致的,但如何知道 ...

  8. JS & DOM 对象

    22:36 2013/6/4 详情参照W3C文档标准 Browser 对象(顶层对象) DOM Window DOM Navigator DOM Screen DOM History DOM Loca ...

  9. JS 操作URL(重要)

    我们可以用javascript获得其中的各个部分1, window.location.href全部URl字符串(在浏览器中就是完整的地址栏)本例返回值: http://www.x2y2.com:80/ ...

  10. secondarynamenode异常

    secondarynamenode异常 -- ::, ERROR org.apache.hadoop.hdfs.server.namenode.SecondaryNameNode: Exception ...