一,什么是BP

"BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。"

我们现在来分析下这些话:

  • “是一种按误差逆传播算法训练的多层前馈网络”

BP是后向传播的英文缩写,那么传播对象是什么?传播的目的是什么?传播的方式是后向,可这又是什么意思呢。

传播的对象是误差,传播的目的是得到所有层的估计误差,后向是说由后层误差推导前层误差:

即BP的思想可以总结为

利用输出后的误差来估计输出层的直接前导层的误差,再用这个误差估计更前一层的误差,如此一层一层的反传下去,就获得了所有其他各层的误差估计。 
  • “BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)”

我们来看一个最简单的三层BP:

  • “BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。”

BP利用一种称为激活函数来描述层与层输出之间的关系,从而模拟各层神经元之间的交互反应。

激活函数必须满足处处可导的条件。那么比较常用的是一种称为S型函数的激活函数:

神经网络的学习目的:

希望能够学习到一个模型,能够对输入输出一个我们期望的输出。
 
学习的方式:
在外界输入样本的刺激下不断改变网络的连接权值
 
学习的本质:
对各连接权值的动态调整

学习的核心:

权值调整规则,即在学习过程中网络中各神经元的连接权变化所依据的一定的调整规则。

二,有监督的BP模型训练过程

1. 思想

有监督的BP模型训练表示我们有一个训练集,它包括了: input X 和它被期望拥有的输出 output Y

所以对于当前的一个BP模型,我们能够获得它针对于训练集的误差

所以BP的核心思想就是:将输出误差以某种形式通过隐层向输入层逐层反传,这里的某种形式其实就是:

也就是一种 "信号的正向传播 ----> 误差的反向传播"的过程:

2.具体

三:算法推导

  神经网络通过模拟人的神经元活动,来构造分类器。它的基本组成单元称为”神经元”,离线情况下如果输入大于某值时,设定神经元处于兴奋状态,产生输出,否则不响应。而这个输入来自于所有其它的神经元。而神经元的响应函数有多种(需要满足可微,这种简单的函数可以拟合任何非线性函数),本文选择sigmod函数。关于基础知识在此不在多说,这里主要介绍一下BP神经网络,并推导权值和阈值的更新公式。

  BP网络通过前向反馈误差来改变权值和阈值,当网络的输出与实际期望的输出均方误差低于某个阈值或者学习次数满足一定条件时,训练完成。首先给出输出均方误差的公式:

  其中,m是输出节点个数,p是训练样本个数。我们就是以最小化这个EA为目标更新网络参数。这里以3层网络为例进行推导,即一个输入层、隐含层、输出层。最小化目标函数采用梯度下降的方法。

1、隐含层到输出层的权值更新

  K为隐含层节点数,i为输出节点个数。权值更新公式:

其中wki表示第k个隐含节点到第i个输出节点之间的权重,η为学习率,是一个使得求解快速收敛的学习因子,为EA关于wki的梯度。即:

因为:

,其中,激活函数对x求导后,y'=y(1-y),所以进一步求得:

这就是wki的梯度值。记:

,表示为权值的增量,则权值更新可写成:

其中增量:

所以根据这个式子我们就可以更新权值了。

2.输入层到隐含层的权值更新

  同理,误差关于权值的梯度可通过以下式子求解,与上面有点不同的是:输入层与隐含节点之间的权值将影响所有的隐含节点到输出层之间的值,所以此时的权值梯度信息应该对误差在隐含层与输出层之间产生累加效应。废话不多说,直接上图上公式更明了:

其中,

所以这一层的权值增量也可以写成这样的形式:

以上为从不同的两篇文中复制过来的  第三部分算法推导中跟上面的公式符号有所不同。

BP神经网络模型及算法推导的更多相关文章

  1. BP神经网络模型与学习算法

    一,什么是BP "BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最 ...

  2. bp神经网络模型推导与c语言实现(转载)

    转载出处:http://www.cnblogs.com/jzhlin/archive/2012/07/28/bp.html BP 神经网络中的 BP 为 Back  Propagation 的简写,最 ...

  3. 机器学习入门-BP神经网络模型及梯度下降法-2017年9月5日14:58:16

    BP(Back Propagation)网络是1985年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一. B ...

  4. BP神经网络模型及梯度下降法

    BP(Back Propagation)网络是1985年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一. B ...

  5. BP神经网络算法推导及代码实现笔记zz

    一. 前言: 作为AI入门小白,参考了一些文章,想记点笔记加深印象,发出来是给有需求的童鞋学习共勉,大神轻拍! [毒鸡汤]:算法这东西,读完之后的状态多半是 --> “我是谁,我在哪?” 没事的 ...

  6. 建模算法(六)——神经网络模型

    (一)神经网络简介 主要是利用计算机的计算能力,对大量的样本进行拟合,最终得到一个我们想要的结果,结果通过0-1编码,这样就OK啦 (二)人工神经网络模型 一.基本单元的三个基本要素 1.一组连接(输 ...

  7. 神经网络和BP算法推导

    注意:绘画太难了,因为他们画,本文中的所有插图来自基本算法饺子机类.请勿转载 1.习模型: 事实上,基本上全部的基本机器学习模型都能够概括为下面的特征:依据某个函数,将输入计算并输出. 图形化表示为下 ...

  8. zz神经网络模型量化方法简介

    神经网络模型量化方法简介 https://chenrudan.github.io/blog/2018/10/02/networkquantization.html 2018-10-02 本文主要梳理了 ...

  9. 神经网络模型及R代码实现

    神经网络基本原理 一.神经元模型 图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias ).则神 ...

随机推荐

  1. [CSS]white-space 属性详解

    实例 规定段落中的文本不进行换行: p { white-space: nowrap } 可能的值 值 描述 normal 默认.空白会被浏览器忽略. pre 空白会被浏览器保留.其行为方式类似 HTM ...

  2. PHP开发圣经读书笔记01

    从今天开始,以“圣经”这本书为教材,系统的温习一下php,之前都是看视频学的. 1.访问表单变量--php变量名称必须与表单域的名称一致 例:$_POST['uname'];  //表示把表单域中na ...

  3. ios中label的文字多种颜色显示

    一 .在初始化方法中把所有需要高亮关键字的label加入到labels数组中,并且把这些label原来字体的颜色加入到 labelTextColors中 ,代码如下 self.labels = [NS ...

  4. websphere6.1安装与配置

    http://www.blogjava.net/103335460/articles/220935.html 一.本人开发环境: jdk1.5.0_11 , eclipse3.2 , MyEclips ...

  5. spring IOC源码分析(3)

    1.IOC容器的依赖注入 Spring中,依赖注入是在用户第一次向IOC容器索要Bean时触发的(通过getBean方法). 在BeanFactory中我们看到getBean(String…)函数,它 ...

  6. IQKeyboredManager使用

    这个库是一个单例,它一旦生效,全项目任何界面都有效.让它生效的代码可以写在任意位置,我写在AppDelegate里. 1 2 3 4 5 6 7 8 9 10 - (BOOL)application: ...

  7. IIS Handler and Module探索

    Create Handler & Module Run the Visual Studio Create a Class Library “HMHandler” --> Change t ...

  8. MongoDB实战指南(三):MongoDB的锁机制

    与关系数据库一样,MongoDB也是通过锁机制来保证数据的完整性和一致性,MongoDB利用读写锁来支持并发操作,读锁可以共享写锁具有排他性.当一个读锁存在时,其他读操作也可以用这个读锁:但当一个写锁 ...

  9. 图片url中包含中文导致网络请求404

    需要对其中的中文使用转换格式,注意不是整个url,如果是整个,"/"这个网络分隔符`也会被转换的 URLEncoder.encode("福利", "u ...

  10. vs2010+ Ankhsvn使用详解

    1.为什么要用VisualSVN Server,而不用Subversion? 回答: 因为如果直接使用Subversion,那么在Windows 系统上,要想让它随系统启动,就要封装SVN Serve ...