找规律!

求N!最后非0位的值。比方2是120的最后一个不是0的值。

输入N比較大,要大数保存。

注意到最后0的个数是与5的因数的个数相等。设f(n)为n!的最后非0位。

那么f(n)=((n%5)!* f(n/5) *2^(n/5))%10

因数2的个数始终大于5,从1開始每连续5个划分为1组,当中5的倍数仅仅提取出一个因数5后,

组成一个新的数列1到n/5,我们有1*2*3*4*5=6*7*8*9*5=2(取最后一个非0位),这里就是2^(n/5)。

再乘上剩下来的几个数字就可以

(比方n是123,那么第一次会剩下121,122,123三个数没有被分配)。

比如:23 就能够变为 f(23) = ((3)! * f(4) * 2^(4))%10; f(4) = 4;

故f(23) = 4; 參考http://blog.csdn.net/yihuikang/article/details/7721875

Last non-zero Digit in N!

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 5908    Accepted Submission(s): 1471

Problem Description
The expression N!, read as "N factorial," denotes the product of the first N positive integers, where N is nonnegative. So, for example,


N N!

0 1

1 1

2 2

3 6

4 24

5 120

10 3628800



For this problem, you are to write a program that can compute the last non-zero digit of the factorial for N. For example, if your program is asked to compute the last nonzero digit of 5!, your program should produce "2" because 5! = 120, and 2 is the last
nonzero digit of 120.
 
Input
Input to the program is a series of nonnegative integers, each on its own line with no other letters, digits or spaces. For each integer N, you should read the value and compute the last nonzero digit of N!.


Output
For each integer input, the program should print exactly one line of output containing the single last non-zero digit of N!.
 
Sample Input
1
2
26
125
3125
9999
 
Sample Output
1
2
4
8
2
8
 

 
#include<stdio.h>
#include<string.h>
const int di[4] = { 6, 2, 4, 8};//这是2的次幂最后一位的循环;
const int pre[10] = { 1, 1, 2, 6, 4,2,2,4,2,8};//前十个数的最后一位;
int a[200], ls;
char s[200];
void tran( int ls )//转换 将个位放在a[0]处
{
for( int i =ls-1; i >= 0; i -- )
a[ls-i-1] = s[i]-'0';
}
void mult( )
{
int i, t=0;//t是借位;
for( i = ls-1; i >= 0; i -- )
{
int q = t*10+a[i];
a[i] = q/5;
t = q%5;
}
while( ls > 0&&a[ls-1] == 0 ) --ls;//排除后面的0 细致考虑一下
}
int la_no_num( )
{
if( ls == 1 ) return pre[a[0]]; //假设仅仅有一位直接输出或返回
int x1 = pre[a[0]%5]; //这是f(n%5)
mult( );
int x2 = di[(a[0]+a[1]*10)%4];//这是2^(n/5) 为什么仅仅算前两位(提示:同余定理)
int ans = (x1*x2*la_no_num())%10;//f(n)=((n%5)!* f(n/5) *2^(n/5))%10
return ans;
}
int main()
{
int la, i;
while( ~scanf( "%s", s ) )
{
ls = strlen(s);
tran(ls);
printf( "%d\n", la_no_num() );
} }

hdoj Last non-zero Digit in N! 【数论】的更多相关文章

  1. 2018.09.17 atcoder Digit Sum(数论)

    传送门 数论好题啊. 首先对于b<=sqrt(n)b<=sqrt(n)b<=sqrt(n)的情况直接枚举b判断一下就行了. 下面谈一谈如何解决b>sqrt(n)b>sqr ...

  2. 【HDOJ】1061 Rightmost Digit

    这道题目可以手工打表,也可以机器打表,千万不能暴力解,会TLE. #include <stdio.h> #define MAXNUM 1000000001 ][]; int main() ...

  3. 杭电ACM分类

    杭电ACM分类: 1001 整数求和 水题1002 C语言实验题——两个数比较 水题1003 1.2.3.4.5... 简单题1004 渊子赛马 排序+贪心的方法归并1005 Hero In Maze ...

  4. 转载:hdu 题目分类 (侵删)

    转载:from http://blog.csdn.net/qq_28236309/article/details/47818349 基础题:1000.1001.1004.1005.1008.1012. ...

  5. 数论 HDOJ 5407 CRB and Candies

    题目传送门 题意:求LCM (C(N,0),C(N,1),...,C(N,N)),LCM是最小公倍数的意思,C函数是组合数. 分析:先上出题人的解题报告 好吧,数论一点都不懂,只明白f (n + 1) ...

  6. POJ 1150 The Last Non-zero Digit 数论+容斥

    POJ 1150 The Last Non-zero Digit 数论+容斥 题目地址: id=1150" rel="nofollow" style="colo ...

  7. hdoj 1061 Rightmost Digit【快速幂求模】

    Rightmost Digit Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  8. HDOJ 1061 Rightmost Digit(循环问题)

    Problem Description Given a positive integer N, you should output the most right digit of N^N. Input ...

  9. HDOJ 1061 Rightmost Digit

    找出数学规律 原题: Rightmost Digit Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Ja ...

随机推荐

  1. Memcache,Redis

    Memcache Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站的速度. ...

  2. Sql Server2000,2005,2008各版本主要区别

    Emerson回来之后,在过程中遇到的一些问题,再次做一些整理,包括本篇的Sql Server各版本之间的区别和另一篇数据库函数. (博文内容来自网络) 数据类型 SQL Server 2008 数据 ...

  3. 转:etcd:从应用场景到实现原理的全方位解读

    原文来自于:http://www.infoq.com/cn/articles/etcd-interpretation-application-scenario-implement-principle ...

  4. 【Java】关于并发

    http://www.cnblogs.com/dolphin0520/p/3958019.html http://www.cnblogs.com/yank/p/3955322.html http:// ...

  5. Windows常见蓝屏故障分析

    转自Windows常见蓝屏故障分析 症状描述: 当您在运行Microsoft Windows 2000/XP/Server 2003.Microsoft Windows Vista/Server 20 ...

  6. linux RWT

    http://www.cnblogs.com/qlwy/archive/2011/06/26/2121919.html#undefined

  7. 【poj2891】同余方程组

    同余方程组 例题1:pku2891Strange Way to Express Integers 中国剩余定理求的同余方程组mod 的数是两两互素的.然而本题(一般情况,也包括两两互素的情况,所以中国 ...

  8. Astyle:代码格式化工具简明指南

    astyle是一个我自己常用的开放源码工具.它可以方便的将程序代码格式化成自己想要的样式而不必人工修改.本来嘛,作为高等生物应该优先去做一些智慧的事情,而不是把时间消耗在机器可以完美完成的事情上. 想 ...

  9. 14.5.5.3 How to Minimize and Handle Deadlocks 如何减少和处理死锁

    14.5.5.3 How to Minimize and Handle Deadlocks 如何减少和处理死锁 这个部分建立在概念信息关于deadlocks 在章节 14.5.5.2, "D ...

  10. 【POJ】2117 Electricity

    无向图求割点和连通块. /* POJ2117 */ #include <iostream> #include <vector> #include <algorithm&g ...