论环形dp的重要!

其实这个环比较简单,稍微分析一下就知道,

这是一个简单环,并且每个联通块里只含有一个。

我觉得把处理环的关键,就是要找出环形和线形(树形)有什么区别。

如果我们从某处断开的做dp的话,转移的结果只对根节点有影响(不确定);

然后我猜测应该只要找到环上相邻两点然后断开分别以他们为根做treedp就可以了

结果真的是这样……

总感觉缺点什么……

有待进一步思考……

 type node=record
       point,next:longint;
     end; var edge:array[..] of node;
    can:array[..] of boolean;
    v:array[..] of boolean;
    p,w:array[..] of longint;
    f:array[..,..] of int64;
    len,find,n,u,z,i:longint;
    ans,res:int64; function max(a,b:int64):int64;
  begin
    if a>b then exit(a) else exit(b);
  end; procedure add(x,y:longint);
  begin
    inc(len);
    edge[len].point:=y;
    edge[len].next:=p[x];
    can[len]:=true;
    p[x]:=len;
  end; procedure dfs(x:longint);   //找环
  var i,y:longint;
  begin
    v[x]:=true;
    i:=p[x];
    while i<>- do
    begin
      y:=edge[i].point;
      if can[i] and not v[y] then   
      begin
        can[i xor ]:=false;   //注意防止因为同一条边而回头
        dfs(y);
        can[i xor ]:=true;    //解除标记
      end
      else if can[i] and v[y] then
      begin
        u:=x;
        z:=y;
        find:=i;
      end;
      i:=edge[i].next;
    end;
  end; procedure treedp(x:longint);
  var i,y:longint;
  begin
    i:=p[x];
    f[x,]:=;
    f[x,]:=w[x];
    while i<>- do
    begin
      y:=edge[i].point;
      if can[i] then   
      begin
        can[i xor ]:=false;
        treedp(y);
        can[i xor ]:=true;
        f[x,]:=f[x,]+max(f[y,],f[y,]);  //基本的treedp
        f[x,]:=f[x,]+f[y,];
      end;
      i:=edge[i].next;
    end;
  end; procedure dp(i:longint);
  begin
    dfs(i);
    can[find]:=false;    //断开
    can[find xor ]:=false;
    treedp(u);
    res:=f[u,];
    treedp(z);
    ans:=ans+max(f[z,],res);  //都是不取根,这里是凭感觉写的,欢迎指教
  end; begin
  len:=-;
  readln(n);
  fillchar(p,sizeof(p),);
  for i:= to n do
  begin
    readln(w[i],z);
    add(z,i);
    add(i,z);
  end;
  for i:= to n do
    if not v[i] then dp(i);
  writeln(ans);
end.

bzoj1040的更多相关文章

  1. 【bzoj1040】骑士

    [bzoj1040]骑士 题意 给定一个基环森林,求最大独立集. 分析 其实这是一道一年前做过的题. 只是今天在看bzoj1023的时候突然来了几许兴致,回过头来看一看. 如果对于一棵树的最大独立集, ...

  2. 【BZOJ1040】骑士(动态规划)

    [BZOJ1040]骑士(动态规划) 题面 BZOJ 题解 对于每一组厌恶的关系 显然是连边操作 如果是一棵树的话 很显然的树型\(dp\) 但是,现在相当于有很多个基环 也就是在一棵树的基础上再加了 ...

  3. 【bzoj1040】 ZJOI2008—骑士

    http://www.lydsy.com/JudgeOnline/problem.php?id=1040 (题目链接) 题意 一个基环森林,从中选出不相邻的若干个点使得这些点的点权和最大. Solut ...

  4. 【BZOJ1040】[ZJOI2008]骑士 树形DP

    [BZOJ1040][ZJOI2008]骑士 Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情 ...

  5. [BZOJ1040] [ZJOI2008]骑士 解题报告

    Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火 ...

  6. 【bzoj1040】骑士[ZJOI2008](树形dp)

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1040 这道题,很明显根据仇恨关系构造出的图形是一堆环套树.如果是普通的树,就可以马上裸树 ...

  7. bzoj1040 基环树上dp

    [bzoj1040][ZJOI2008]骑士 2014年2月26日5,2040 Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各 ...

  8. [bzoj1040][ZJOI2008]骑士_树形dp_基环树_并查集

    骑士 bzoj-1040 ZJOI-2008 题目大意:n个骑士,每个骑士有权值val和一个讨厌的骑士.如果一个骑士讨厌另一个骑士那么他们将不会一起出战.问出战的骑士最大atk是多少. 注释:$1\l ...

  9. 【BZOJ-1040】骑士 树形DP + 环套树 + DFS

    1040: [ZJOI2008]骑士 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3312  Solved: 1269[Submit][Status ...

  10. BZOJ1040 [ZJOI2008]骑士

    Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各 界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战 ...

随机推荐

  1. SSH连接时出现「WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!」解决办法

    用ssh來操控github,沒想到連線時,出現「WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!」,後面還有一大串英文,這時當然要向Google大神求助 ...

  2. Java I/O继承图

    Reader/Writer继承关系图 RandomAccess继承关系图

  3. jQuery去掉导航分割线的最后一条竖线

    #top #navigation ul li { float:left; width:120px; background:url(../images/navline.jpg) no-repeat 11 ...

  4. Memcached服务器安装、配置、使用详解

    管理memcached服务 启动Memcached 一般情况下,简单地可以使用类似如下形式,启动Memcached服务: /usr/local/bin/memcached -d -m 64 -I 20 ...

  5. memcached一些整理

        .NET中使用Memcached的相关资源整理   Memcached官方站点:http://www.danga.com/memcached/ Memcached Win32 1.2.6下载: ...

  6. Modernizr.js介绍与使用

    Modernizr帮助我们检测浏览器是否实现了某个feature,如果实现了那么开发人员就可以充分利用这个feature做一些工作,反之没有实现开发人员也好提供一个fallback.所以,我们要明白的 ...

  7. PHP之session_start()详解

    1.session的工作原理 (1)首先使用session_start()函数进行初始换 (2)当执行PHP脚本时,通过使用$_SESSION超全局变量注册session变量. (3)当PHP脚本执行 ...

  8. asp.net使用MVC4框架基于NPOI做导出数据到Excel表

    NPOI 是 POI 项目的 .NET 版本.POI是一个开源的Java读写Excel.WORD等微软OLE2组件文档的项目. 使用 NPOI 你就可以在没有安装 Office 或者相应环境的机器上对 ...

  9. mysql存储过程讲解

    1.数据库存储过程:简单滴说,存储过程就是存储在数据库中的一个程序. 2..数据库存储过程作用: 第一:存储过程因为SQL语句已经预编绎过了,因此运行的速度比较快. 第二:存储过程可以接受参数.输出参 ...

  10. 测试MySQL事务管理

    1.MySQL 版本 mysql> select version(); +------------+ | version() | +------------+ -log | +--------- ...