Description

Our Black Box represents a primitive database. It can save an integer array and has a special i variable. At the initial moment Black Box is empty and i equals 0. This Black Box processes a sequence of commands (transactions). There are two types of transactions:

ADD (x): put element x into Black Box; 
GET: increase i by 1 and give an i-minimum out of all integers containing in the Black Box. Keep in mind that i-minimum is a number located at i-th place after Black Box elements sorting by non- descending.

Let us examine a possible sequence of 11 transactions:

Example 1

N Transaction i Black Box contents after transaction Answer

(elements are arranged by non-descending)

1 ADD(3) 0 3

2 GET 1 3 3

3 ADD(1) 1 1, 3

4 GET 2 1, 3 3

5 ADD(-4) 2 -4, 1, 3

6 ADD(2) 2 -4, 1, 2, 3

7 ADD(8) 2 -4, 1, 2, 3, 8

8 ADD(-1000) 2 -1000, -4, 1, 2, 3, 8

9 GET 3 -1000, -4, 1, 2, 3, 8 1

10 GET 4 -1000, -4, 1, 2, 3, 8 2

11 ADD(2) 4 -1000, -4, 1, 2, 2, 3, 8

It is required to work out an efficient algorithm which treats a given sequence of transactions. The maximum number of ADD and GET transactions: 30000 of each type.

Let us describe the sequence of transactions by two integer arrays:

1. A(1), A(2), ..., A(M): a sequence of elements which are being included into Black Box. A values are integers not exceeding 2 000 000 000 by their absolute value, M <= 30000. For the Example we have A=(3, 1, -4, 2, 8, -1000, 2).

2. u(1), u(2), ..., u(N): a sequence setting a number of elements which are being included into Black Box at the moment of first, second, ... and N-transaction GET. For the Example we have u=(1, 2, 6, 6).

The Black Box algorithm supposes that natural number sequence u(1), u(2), ..., u(N) is sorted in non-descending order, N <= M and for each p (1 <= p <= N) an inequality p <= u(p) <= M is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our A(1), A(2), ..., A(u(p)) sequence.

Input

Input contains (in given order): M, N, A(1), A(2), ..., A(M), u(1), u(2), ..., u(N). All numbers are divided by spaces and (or) carriage return characters.

Output

Write to the output Black Box answers sequence for a given sequence of transactions, one number each line.

Sample Input

7 4
3 1 -4 2 8 -1000 2
1 2 6 6

Sample Output

3
3
1
2

Source

【分析】

练下手而已,没什么。

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#include <utility>
#include <iomanip>
#include <string>
#include <cmath>
#include <queue>
#include <assert.h>
#include <map> const int N = + ;
const int SIZE = ;//块状链表的大小
const int M = + ;
using namespace std;
struct TREAP{
struct Node{
int fix, size;
int val;
Node *ch[];
}mem[ + ], *root;
int tot;
//大随机
int BIG_RAND(){return (rand() * RAND_MAX + rand());}
Node *NEW(){
Node *p = &mem[tot++];
p->fix = BIG_RAND();
p->val = ;
p->size = ;
p->ch[] = p->ch[] = NULL;
return p;
}
//将t的d节点换到t
void rotate(Node *&t, int d){
Node *p = t->ch[d];
t->ch[d] = p->ch[d ^ ];
p->ch[d ^ ] = t;
t->size = ;
if (t->ch[] != NULL) t->size += t->ch[]->size;
if (t->ch[] != NULL) t->size += t->ch[]->size;
t = p;
t->size = ;
if (t->ch[] != NULL) t->size += t->ch[]->size;
if (t->ch[] != NULL) t->size += t->ch[]->size;
return;
}
void insert(Node *&t, int val){
//插入
if (t == NULL){
t = NEW();
t->val = val;
return;
}
//大的在右边,小的在左边
int dir = (val >= t->val);
insert(t->ch[dir], val);
//维护最大堆的性质
if (t->ch[dir]->fix > t->fix) rotate(t, dir);
t->size = ;
if (t->ch[] != NULL) t->size += t->ch[]->size;
if (t->ch[] != NULL) t->size += t->ch[]->size;
}
//在t的子树中找到第k小的值
int find(Node *t, int k){
if (t->size == ) return t->val;
int l = ;//t的左子树中有多少值
if (t->ch[] != NULL) l += t->ch[]->size;
if (k == (l + )) return t->val;
if (k <= l) return find(t->ch[], k);
else return find(t->ch[], k - (l + ));
}
}treap;
typedef long long ll;
int have[N];//have为1则在这个地方GET
int data[N], m, n; void init(){
treap.root = NULL;
treap.tot = ;
memset(have, , sizeof(have));
scanf("%d%d", &m, &n);
for (int i = ; i <= m; i++) scanf("%d", &data[i]);
for (int i = ; i <= n; i++){
int x;
scanf("%d", &x);
have[x]++;
}
}
void work(){
int pos = ;//代表要获得的位置
for (int i = ; i <= m; i++){
treap.insert(treap.root, data[i]);
//printf("%d", treap.root->size);
while (have[i]){
pos++;
printf("%d\n", treap.find(treap.root, pos));
have[i]--;
}
} } int main(){
int T;
#ifdef LOCAL
freopen("data.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
init();
work();
return ;
}

【POJ1442】【Treap】Black Box的更多相关文章

  1. 【无旋式treap】例题

    [bzoj3223]文艺平衡树 Description 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转一个区间,例如原有序序列是5 4 3 2 1,翻转区间是[ ...

  2. BZOJ2141&洛谷1975 排队 【线段树套treap】

    题目 排排坐,吃果果,生果甜嗦嗦,大家笑呵呵.你一个,我一个,大的分给你,小的留给我,吃完果果唱支歌,大家乐和和. 红星幼儿园的小朋友们排起了长长地队伍,准备吃果果.不过因为小朋友们的身高有所区别,排 ...

  3. BZOJ3196 Tyvj1730 二逼平衡树 【树套树】 【线段树套treap】

    BZOJ3196 Tyvj1730 二逼平衡树 Description 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名 2.查询区间内排名 ...

  4. 【液晶模块系列基础视频】4.3.X-GUI图形界面库-画box函数简介

    [液晶模块系列基础视频]4.3.X-GUI图形界面库-画box函数简介 ============================== 技术论坛:http://www.eeschool.org 博客地址 ...

  5. 【fhq Treap】bzoj1500(听说此题多码上几遍就能不惧任何平衡树题)

    1500: [NOI2005]维修数列 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 15112  Solved: 4996[Submit][Statu ...

  6. 【BZOJ5138】[Usaco2017 Dec]Push a Box(强连通分量)

    [BZOJ5138][Usaco2017 Dec]Push a Box(强连通分量) 题面 BZOJ 洛谷 题解 这题是今天看到萝卜在做然后他一眼秒了,我太菜了不会做,所以就来做做. 首先看完题目,是 ...

  7. 【数据结构】【平衡树】浅析树堆Treap

    [Treap] [Treap浅析] Treap作为二叉排序树处理算法之一,首先得清楚二叉排序树是什么.对于一棵树的任意一节点,若该节点的左子树的所有节点的关键字都小于该节点的关键字,且该节点的右子树的 ...

  8. 【无旋 treap】例题

    [bzoj3223]文艺平衡树 Description 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转一个区间,例如原有序序列是5 4 3 2 1,翻转区间是[ ...

  9. 新鲜出炉的30个精美的 jQuery & CSS3 效果【附演示和教程】

    新鲜出炉的30个精美的 jQuery & CSS3 效果[附演示和教程]   作为最流行的 JavaScript 开发框架,jQuery 在现在的 Web 开发项目中扮演着重要角色,它简化了 ...

  10. 【程序员小助手】Emacs,最强编辑器,没有之一

    内容简介 1.Emacs简介 2.Emacs三个平台的安装与配置 3.自动补全插件 4.小编的Emacs配置文件 5.常用快捷方式 6.和版本控制系统的配合(以SVN为例) [程序员小助手]系列 在这 ...

随机推荐

  1. oracle查询语句2【转载】

    本文使用的实例表结构与表的数据如下: scott.emp员工表结构如下:   SQL> DESC SCOTT.EMP; Name     Type         Nullable Defaul ...

  2. suse linux 编译安装Apache时报“APR NOT FOUND”的解决方法

    今日编译apache时出错: #./configure --prefix……检查编辑环境时出现: checking for APR... noconfigure: error: APR not fou ...

  3. 游戏开发设计模式之对象池模式(unity3d 示例实现)

    前篇:游戏开发设计模式之命令模式(unity3d 示例实现) 博主才学尚浅,难免会有错误,尤其是设计模式这种极富禅意且需要大量经验的东西,如果哪里书写错误或有遗漏,还请各位前辈指正. 原理:从一个固定 ...

  4. poj 2960 S-Nim(SG函数)

    S-Nim Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 3694   Accepted: 1936 Description ...

  5. sql2005如何附加数据库

    1.首先把mdf(数据库主文件)和ldf(数据库日志文件)放到C:\Program Files (x86)\Microsoft SQL Server\MSSQL.1\MSSQL\Data 2.登陆sq ...

  6. GDI+ —— Tcanvas 类属性及方法.......

    delphi TCanvas类 类关系   TObject-> TPersistent   对那些作图对象,可使用TCanvas对象作为画布.标准的window控件,例如编辑控件和列表框控件,当 ...

  7. Mathlab编程-微积分在Matlab中的解法

    这一章节将介绍一系列典型的微积分问题(求极限.级数.定积分.导数.重积分等)在Matlab中的求解. 首先关于极限: (1)    数列极限: 给出下面三段例程. 求解数列极限的limit函数参数说明 ...

  8. crawler4j:轻量级多线程网络爬虫

    crawler4j是Java实现的开源网络爬虫.提供了简单易用的接口,可以在几分钟内创建一个多线程网络爬虫. 安装 使用Maven 使用最新版本的crawler4j,在pom.xml中添加如下片段: ...

  9. android布局之线性布局

    LinearLayout 线性布局有两种,分别是水平线性布局和垂直线性布局,LinearLayout属性中android:orientation为设置线性布局当其="vertical&quo ...

  10. 开源 免费 java CMS - FreeCMS2.1 会员站内信

    项目地址:http://www.freeteam.cn/ 站内信 1.1.1 写信 从左側管理菜单点击写信进入. 输入收信人.标题.内容后点击发送button. 1.1.2 收件箱 从左側管理菜单点击 ...