题目大意:有一个串(全部由小写字母组成),现在要把它分成两部分,如果分开后的部分是回文串就计算出来它的价值总和,如果不是回文的那么价值就是0,最多能得到的最大价值。
 
分析:首先的明白这个最大价值有可能是负数,比如下面:
-1 -1 -1.....
aaa
这样的情况不管怎么分,分出来的串都是回文串,所以得到的最大价值是 -3。
求回文串的算法使用的是Manacher算法,线性的复杂度。
 
代码如下:
================================================================================================================
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std; const int MAXN = 1e6+;
const int MAXM = ;
const int oo = 1e9+;
char str[MAXN];
int p[MAXN], val[], sum[MAXN];
bool Left[MAXN], Right[MAXN]; /**
str[] 先存原字符串,后存扩展后的字符串
p[] p[i] 表示以i为中心的回文串有多长(只记录一边的长度)、
sum[] sum[i]表示前i个字符的总价值和
Left[] Left[i] 表示前缀长度为 i 的串是否是回文串
Right[] Right[i] 表示后缀长度为 i 的串是否是回文串
**/ void Manacher(char str[], int N)
{
int i, id=; for(i=; i<N; i++)
{
if(p[id]+id > i)
p[i] = min( p[id*-i], p[id]+id-i);
else p[i] = ; while(str[ i+p[i] ] == str[ i-p[i] ])
p[i]++; if(p[id]+id < p[i]+i)
id = i; if(p[i] == i)
Left[p[i]-] = true;
if(p[i]+i- == N)
Right[p[i]-] = true;
}
} int main()
{
int T; scanf("%d", &T); while(T--)
{
int i; memset(Left, false, sizeof(Left));
memset(Right, false, sizeof(Right));
memset(p, false, sizeof(p)); for(i=; i<; i++)
scanf("%d", &val[i]); scanf("%s", str); int len = strlen(str); for(i=; i<=len; i++)
sum[i] = sum[i-]+val[str[i-]-'a']; for(i=len; i>=; i--)
{
str[i+i+] = str[i];
str[i+i+] = '#';
}
str[] = '$'; Manacher(str, len+len+); int ans = -oo; for(i=; i<len; i++)
{
int temp = ; if(Left[i] == true)
temp += sum[i];
if(Right[len-i] == true)
temp += sum[len]-sum[i]; ans = max(ans, temp);
} printf("%d\n", ans);
} return ;
}

Best Reward HDU 3613(回文子串Manacher)的更多相关文章

  1. 九度OJ 1528 最长回文子串 -- Manacher算法

    题目地址:http://ac.jobdu.com/problem.php?pid=1528 题目描述: 回文串就是一个正读和反读都一样的字符串,比如"level"或者"n ...

  2. 最长回文子串——manacher

    最长回文子串--Manacher 算法 (原版的博主的代码都是用py写的,这里改成c++) c++ 算法 字符串处理 0. 问题定义 最长回文子串问题:给定一个字符串,求它的最长回文子串长度. 如果一 ...

  3. Girls' research---hdu3294(回文子串manacher)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3294 给出一个字符串和加密的字符规律 例如 c abcba c代表把串中的c改成a,d改成b... b ...

  4. 最长回文子串 —— Manacher (马拉车) 算法

    最长回文子串 回文串就是原串和反转字符串相同的字符串.比如 aba,acca.前一个是奇数长度的回文串,后一个是偶数长度的回文串. 最长回文子串就是一个字符串的所有子串中,是回文串且长度最长的子串. ...

  5. lintcode最长回文子串(Manacher算法)

    题目来自lintcode, 链接:http://www.lintcode.com/zh-cn/problem/longest-palindromic-substring/ 最长回文子串 给出一个字符串 ...

  6. 最长回文子串Manacher算法模板

    Manacher算法能够在O(N)的时间复杂度内得到一个字符串以任意位置为中心的回文子串.其算法的基本原理就是利用已知回文串的左半部分来推导右半部分. 首先,在字符串s中,用rad[i]表示第i个字符 ...

  7. 最长回文子串—Manacher 算法 及 python实现

    最长回文子串问题:给定一个字符串,求它的最长回文子串长度.如果一个字符串正着读和反着读是一样的,那它就是回文串.   给定一个字符串,求它最长的回文子串长度,例如输入字符串'35534321',它的最 ...

  8. hihocoder #1032 : 最长回文子串 Manacher算法

    题目链接: https://hihocoder.com/problemset/problem/1032?sid=868170 最长回文子串 时间限制:1000ms内存限制:64MB 问题描述 小Hi和 ...

  9. 5. Longest Palindromic Substring(最长回文子串 manacher 算法/ DP动态规划)

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  10. HiHo 1032 最长回文子串 (Manacher算法求解)

    /** * 求解最长回文字串,Manacher算法o(n)求解最长回文子串问题 **/ #include<cstdio> #include<cstdlib> #include& ...

随机推荐

  1. JS计算指定日期是距今的第几周,星期几

    无意中在百度知道上发现这样一个问题,就抽时间见写了一个函数. 首先我们需要明确,既然是指定日期距今的第几周,那么就要知道指定的日期是什么,而且是不能确定的,会根据使用者不同而得到不同的日期,所以我们需 ...

  2. IOS学习--UILable使用手册(20150120)

    第一步:创建一个UILable对象 UILabel *lable = [[UILabel alloc]initWithFrame:CGRectMake(, , , )]; 第二步:设置对象的各种属性 ...

  3. sicily-2499 平方数

    题目分析: 一个数可以表示成四种状态,所以可以用一个状态数组来存放该数由几个数的平方和表示.1.表示该数本身是完全平方.2.表示该数是由两个平方和3.表示三个.4.表示4个.一次遍历找出本身是完全平方 ...

  4. LA 6476 Outpost Navigation (DFS+剪枝)

    题目链接 Solution DFS+剪枝 对于一个走过点k,如果有必要再走一次,那么一定是走过k后在k点的最大弹药数增加了.否则一定没有必要再走. 记录经过每个点的最大弹药数,对dfs进行剪枝. #i ...

  5. laravel4通过控制视图模板路劲来动态切换主题

    通过控制视图模板路劲来动态切换主题 App::before(function($request) { $paths = Terminal::isMobile() ? array(__dir__.'/v ...

  6. php基础知识【oop/mvc/orm/aop】

    OOP 面向对象编程是一种计算机编程架构.OOP 的一条基本原则是计算机程序是由单个能够起到子程序作用的单元或对象组合而成.OOP 达到了软件工程的三个主要目标:重用性.灵活性和扩展性.为了实现整体运 ...

  7. Ubuntu 创建快捷方式的方法

    ln -s  /要创建快捷方式的地方/ /创建在哪里/

  8. VS快捷键和技巧

    1. 怎样调整代码排版的格式? 选择:编辑->高级->设置文档的格式或编辑->高级->设置选中代码的格式. 格式化cs代码:Ctrl+k+f 格式化aspx代码:Ctrl+k+ ...

  9. iOS开发学习--纯代码 UIScrollView 无限循环的实现——代码类封装

    一个简单的利用UIScrollView 实现的无线滚动banner,下面的代码实现,因为封装问题,对两个及一下的view 支持出了一点问题(view是传参进来的,不可以生成两份),但是原理是正确的,智 ...

  10. Sequence《优先队列》

    Description Given m sequences, each contains n non-negative integer. Now we may select one number fr ...