题目大意:有一个串(全部由小写字母组成),现在要把它分成两部分,如果分开后的部分是回文串就计算出来它的价值总和,如果不是回文的那么价值就是0,最多能得到的最大价值。
 
分析:首先的明白这个最大价值有可能是负数,比如下面:
-1 -1 -1.....
aaa
这样的情况不管怎么分,分出来的串都是回文串,所以得到的最大价值是 -3。
求回文串的算法使用的是Manacher算法,线性的复杂度。
 
代码如下:
================================================================================================================
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std; const int MAXN = 1e6+;
const int MAXM = ;
const int oo = 1e9+;
char str[MAXN];
int p[MAXN], val[], sum[MAXN];
bool Left[MAXN], Right[MAXN]; /**
str[] 先存原字符串,后存扩展后的字符串
p[] p[i] 表示以i为中心的回文串有多长(只记录一边的长度)、
sum[] sum[i]表示前i个字符的总价值和
Left[] Left[i] 表示前缀长度为 i 的串是否是回文串
Right[] Right[i] 表示后缀长度为 i 的串是否是回文串
**/ void Manacher(char str[], int N)
{
int i, id=; for(i=; i<N; i++)
{
if(p[id]+id > i)
p[i] = min( p[id*-i], p[id]+id-i);
else p[i] = ; while(str[ i+p[i] ] == str[ i-p[i] ])
p[i]++; if(p[id]+id < p[i]+i)
id = i; if(p[i] == i)
Left[p[i]-] = true;
if(p[i]+i- == N)
Right[p[i]-] = true;
}
} int main()
{
int T; scanf("%d", &T); while(T--)
{
int i; memset(Left, false, sizeof(Left));
memset(Right, false, sizeof(Right));
memset(p, false, sizeof(p)); for(i=; i<; i++)
scanf("%d", &val[i]); scanf("%s", str); int len = strlen(str); for(i=; i<=len; i++)
sum[i] = sum[i-]+val[str[i-]-'a']; for(i=len; i>=; i--)
{
str[i+i+] = str[i];
str[i+i+] = '#';
}
str[] = '$'; Manacher(str, len+len+); int ans = -oo; for(i=; i<len; i++)
{
int temp = ; if(Left[i] == true)
temp += sum[i];
if(Right[len-i] == true)
temp += sum[len]-sum[i]; ans = max(ans, temp);
} printf("%d\n", ans);
} return ;
}

Best Reward HDU 3613(回文子串Manacher)的更多相关文章

  1. 九度OJ 1528 最长回文子串 -- Manacher算法

    题目地址:http://ac.jobdu.com/problem.php?pid=1528 题目描述: 回文串就是一个正读和反读都一样的字符串,比如"level"或者"n ...

  2. 最长回文子串——manacher

    最长回文子串--Manacher 算法 (原版的博主的代码都是用py写的,这里改成c++) c++ 算法 字符串处理 0. 问题定义 最长回文子串问题:给定一个字符串,求它的最长回文子串长度. 如果一 ...

  3. Girls' research---hdu3294(回文子串manacher)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3294 给出一个字符串和加密的字符规律 例如 c abcba c代表把串中的c改成a,d改成b... b ...

  4. 最长回文子串 —— Manacher (马拉车) 算法

    最长回文子串 回文串就是原串和反转字符串相同的字符串.比如 aba,acca.前一个是奇数长度的回文串,后一个是偶数长度的回文串. 最长回文子串就是一个字符串的所有子串中,是回文串且长度最长的子串. ...

  5. lintcode最长回文子串(Manacher算法)

    题目来自lintcode, 链接:http://www.lintcode.com/zh-cn/problem/longest-palindromic-substring/ 最长回文子串 给出一个字符串 ...

  6. 最长回文子串Manacher算法模板

    Manacher算法能够在O(N)的时间复杂度内得到一个字符串以任意位置为中心的回文子串.其算法的基本原理就是利用已知回文串的左半部分来推导右半部分. 首先,在字符串s中,用rad[i]表示第i个字符 ...

  7. 最长回文子串—Manacher 算法 及 python实现

    最长回文子串问题:给定一个字符串,求它的最长回文子串长度.如果一个字符串正着读和反着读是一样的,那它就是回文串.   给定一个字符串,求它最长的回文子串长度,例如输入字符串'35534321',它的最 ...

  8. hihocoder #1032 : 最长回文子串 Manacher算法

    题目链接: https://hihocoder.com/problemset/problem/1032?sid=868170 最长回文子串 时间限制:1000ms内存限制:64MB 问题描述 小Hi和 ...

  9. 5. Longest Palindromic Substring(最长回文子串 manacher 算法/ DP动态规划)

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  10. HiHo 1032 最长回文子串 (Manacher算法求解)

    /** * 求解最长回文字串,Manacher算法o(n)求解最长回文子串问题 **/ #include<cstdio> #include<cstdlib> #include& ...

随机推荐

  1. shell脚本学习之case例子

    case和select结构在技术上说并不是循环, 因为它们并不对可执行代码块进行迭代. 但是和循环相似的是, 它们也依靠在代码块顶部或底部的条件判断来决定程序的分支.  在代码块中控制程序分支  ca ...

  2. Singleton设计模式的一种见解

    单实例Singleton设计模式可能是被讨论和使用的最广泛的一个设计模式了,这可能也是面试中问得最多的一个设计模式了.这个设计模式主要目的是想在整个系统中只能出现一个类的实例.这样做当然是有必然的,比 ...

  3. BeanUtils的日期问题

    //注册日期类型转换器 //第一种  自定义方法            ConvertUtils.register(new Converter(){                //第一个参数是目标 ...

  4. LAMP的编译日志,

    在CentOS5.2上,编译LAMP的,两年前测试通过的,现在留印 ### 在记事本中 ,不要打开 自动换行,否则一些命令 无法正常运行###把源文件考到/src/目录下,然后进入/src////// ...

  5. python - StringIO文本缓冲

    参考:http://pymotwcn.readthedocs.org/en/latest/documents/StringIO.html 类StringIO提供了一个在内存中方便处理文本的类文件(读, ...

  6. Win8.1 64bit安装Genymotion模拟器

    其实安装并不复杂,只要环境正常,此事并不难.但估计最坏的情况都被我撞上了,才折腾了差不多一天的 那我有哪些环境不正常呢? 破解了系统主题 Device Install Service服务未启动 下面来 ...

  7. opencv之图像膨胀

    #include <cv.h> #include <highgui.h> void main() { IplImage* src; IplImage*dst; src=cvLo ...

  8. Android 内核基本知识

    Android基本知识 Android基本知识.... 1 1. 各版本系统特性.... 1 2. View绘制流程.... 2 3. 动画体系.... 2 4. 事件分发机制.... 3 输入消息获 ...

  9. NandFlash驱动框架

    1.首先和前面的几个驱动程序相似,需要分配一个nand_chip结构体 s3c_nand = kzalloc(sizeof(struct nand_chip), GFP_KERNEL); 然后填充该结 ...

  10. SQL SERVER CEILING 函数 取整时的坑。。。

    CEILING ---返回大于或等于指定数值表达式的最小整数 当舍去同一个大小的值 但是正负方向不一致时要注意小数位四舍五入的问题   例如: SELECT CEILING($123.45), CEI ...