Q:定义p级数有如下形式,讨论p级数的敛散性。(p>o)

我们以p = 1作为分界点,因为实践表明这个分界点是最优区分度的。那么下面我们进行分情况讨论。

在这之前,我们有必要先引入一个检验敛散性的方法——积分检验法。

所谓积分检验法,就是将级数的通项看成一个函数表达式,而求解无穷级数也就是求解无穷项的和的时候,其实恰恰对应着函数求积分的过程,因此我们在判断无穷级数敛散性的时候,我们可以借助积分这个工具来进行间接的判断。给出下面的图便一目了然。

原则上这个方法的正确性是需要证明的,在《托马斯大学微积分》中也给出了详尽的证明,考虑其原理非常简单易懂,笔者这里就不做累述了。

(1)p >1:

级数收敛。

(2)p<1:

采取相同的策略,得到的结果是无穷,级数发散。

(3)p=1:

我们会得到著名的调和级数,在这里呈现出一种最简单的证明方法:

∑1/p = 1 + 1/2 + (1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16)…可以看到每个括号里的和都大于1/2,而显然这个无穷级数能够继续进行这种“套括号”因此∑1/p趋于无穷,级数发散。

《University Calculus》-chaper8-无穷序列和无穷级数-p级数的更多相关文章

  1. 《University Calculus》-chaper8-无穷序列和无穷级数-等比级数

    前言:其实无穷序列和无穷级数和数列{an}以及我们接触微积分就给出的极限概念lim有着紧密的联系,它对于我们在具体的问题当中进行建模和数据分析有着非常重要的作用. 无穷序列: 最简单的一种说法,就是一 ...

  2. Tyvj-TOM的无穷序列

    背景 蛟川书院模拟试题 描述 TOM有一个无穷序列中如下:110100100010000100000.....请你帮助TOM找出在这个无穷序列中指定位置上的数字 输入格式 第一行一个正整数N,表示询问 ...

  3. 《University Calculus》-chape8-无穷序列和无穷级数-欧拉恒等式

    写在前面:写在前面的当然是对大天朝教材的吐槽啦. 曾记否,高中所学虚数和复平面的概念,如此虚无的概念到了大学一门叫<模拟电子技术>的课程中居然明目张胆的开始进行计算! 曾记否,高中的指对运 ...

  4. 《University Calculus》-chape8-无穷序列和无穷级数-基本极限恒等式

    基于基本的极限分析方法(诸多的无穷小以及洛必达法则),我们能够得到推导出一些表面上看不是那么显然的式子,这些极限恒等式往往会在其他的推导过程中用到,其中一个例子就是概率论中的极限定理那部分知识.

  5. 《University Calculus》-chaper8-无穷序列和无穷级数-泰勒定理的证明

    泰勒定理: 证明:

  6. 《University Calculus》-chaper8-无穷序列和无穷级数-比值审敛法

    在分析等比级数的过程中,我们发现对于q<1的等比级数是收敛的,它表示级数每一项与它前一项的比值小于1,我们能否将这种方法推广起来用于一般级数的审敛呢? 从极限的定义出发:

  7. 《University Calculus》-chape5-积分法-积分的定义

    这一章节讨论积分的定义以及微积分基本定理. 笔者先前在数学证明专栏中关于高斯定理的证明的开头,给出了一段关于微积分思想的概括,文中提到根据导数(微分)的定义,根据其逆定义来给出积分的定义和计算方法,这 ...

  8. 《University Calculus》-chaper13-向量场中的积分-线积分

    线积分: 基于二重积分和三重积分的引入,我们对于线积分的引入过程将会轻车熟路. 对于一根不均匀密度的铜丝,我们如何求其总质量?如下图. 类似二重积分和三重积分的引入,我们首先基于实际问题给出黎曼和的形 ...

  9. 《University Calculus》-chaper13-多重积分-三重积分的引入

    承接之前对一重积分和二重积分的介绍,这里我们自然的引出三重积分. 在二重积分的引入中,我们曾经埋下过一个小伏笔,二重积分的几何意义是求解一个体积,但是我们仅仅限定在了曲顶柱体的几何体,那么对于完全由曲 ...

随机推荐

  1. 开通博客第一天 (先发一些android(java)常见异常信息

    常见异常: java.lang.AbstractMethodError抽象方法错误.当应用试图调用抽象方法时抛出. java.lang.AssertionError断言错.用来指示一个断言失败的情况. ...

  2. NSDate和NSString的转换及判定是昨天,今天,明天

    用于uidate,picker.. +(NSDate*) convertDateFromString:(NSString*)uiDate{    NSDateFormatter *formatter ...

  3. ios 动画效果CATransition笔记

    初学ios开发,很多概念还不清楚,所以只有边学边做例子.又怕学了后面忘了前面,因此用自己的博客来纪录自己的学习历程,也是对自己学习不要懈怠做个监督. 刚学ios做动画效果.因为ios封装得很好,实现i ...

  4. zoj3839-Poker Face

    #include<cstdio>int n;void P(int i,int j,int n,int f){ if(i==n){ for(int k=1;k<=n;k++)print ...

  5. ecshop 商店设置,新增或者修改字段

    当想要新增选项到ecshop的商店设置时, 第一步:在ecs_shop_config这个表增加一条设置项记录 parent_id.code.type.value type 会有 group text  ...

  6. laravel5.2学习资源

    研究laravel的过程中基本把国内关于laravel的资料给翻了一遍了: 整理了一些中文的资源如下: 一:教程系列 1:https://laravist.com/series/laravel-5-b ...

  7. nginx——location 优先级

    一. location 的匹配符1.等于匹配符:=等于匹配符就是等号,特点可以概括为两点:精确匹配不支持正则表达式2.空匹配符空匹配符的特点是:匹配以指定模式开始的 URI不支持正则表达式3.正则匹配 ...

  8. Flask-SQLALchemy查询

    from: http://blog.sina.com.cn/s/blog_633277f90100kpvm.html 似乎ORM最难设计的部分是查询.特别是面向对象的查询,今天学习SQLAlchemy ...

  9. Delphi中停靠技术的实现

    随着软件技术的不断进步,软件界面也越来越美观,操作也越来越方便.综观市面上比较专业的各种软件,我们会发现大部分都提供窗体停靠的功能,特别象工具软件,基本上都或多或少有停靠功能.自然,Delphi也支持 ...

  10. C#【数据库】 Access类

    using System; using System.Data; using System.Data.OleDb; namespace AccessDb { /**//// <summary&g ...