题面:https://www.codechef.com/problems/FNCS

题解:

我们考虑对 n 个函数进行分块,设块的大小为S。

每个块内我们维护当前其所有函数值的和,以及数组中每个元素对这个块函数值的和的贡献系数。

那么每次修改操作我们就可以对每个块函数值的和 O(1)进行修改。

对于询问,落在完整块内的部分我们维护了它的和,直接 O(1)调用即可。

剩余的部分我们对每个函数依次求值。

那么现在问题就变为单点修改、询问区间和。

如果我们使用树状数组,那么单次询问与单次修改复杂度操作均为 O(logn),

而询问操作数目远多于修改操作导致时间效率不平衡。

所以我们对原数组求一遍前缀和,然后问题变为区间修改、单点查询,

这个我们用分块便可以做到 O(S+n/S)修改和 O(1)询问了。

PS:此题卡long long,要用unsigned long long。。。

code:

 #include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
char ch;
bool ok;
void read(int &x){
for (ok=,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=;
for (x=;isdigit(ch);x=x*+ch-'',ch=getchar());
if (ok) x=-x;
}
typedef unsigned long long int64;
const int maxs=;
const int maxn=;
int n,q,siz,lim,op,l,r,x,y,bel[maxn];
struct Data{
int l,r;
}block[maxs],seg[maxn];
int a[maxn];
int f[maxs][maxn];
int64 res[maxs],sum[maxs][maxs],tag[maxs];
struct Seg{
int add[maxn<<];
void init(){memset(add,,sizeof(add));}
void pushdown(int k){if (add[k]) add[k<<]+=add[k],add[(k<<)+]+=add[k],add[k]=;}
void modify(int k,int l,int r,int x,int y){
if (l==x&&r==y){add[k]++;return;}
int m=(l+r)>>;
if (y<=m) modify(k<<,l,m,x,y);
else if (x<=m) modify(k<<,l,m,x,m),modify((k<<)+,m+,r,m+,y);
else modify((k<<)+,m+,r,x,y);
}
void get(int k,int l,int r,int id){
if (l==r){f[id][l]=add[k],res[id]+=1ULL*add[k]*a[l];return;}
int m=(l+r)>>;
pushdown(k);
get(k<<,l,m,id),get((k<<)+,m+,r,id);
}
}T;
void add(int x,int v){
int id=bel[x],st=id;
if (x>block[id].l){
for (int i=x;i<=block[id].r;i++) sum[id][i-block[id].l]+=v;
st++;
}
for (int i=st;i<=lim;i++) tag[i]+=v;
}
int64 query(int x){
if (!x) return ;
int id=bel[x];
return sum[id][x-block[id].l]+tag[id];
}
void modify(int x,int v){
add(x,-a[x]);
for (int i=;i<=lim;i++) res[i]-=1ULL*f[i][x]*a[x];
a[x]=v;
add(x,a[x]);
for (int i=;i<=lim;i++) res[i]+=1ULL*f[i][x]*a[x];
}
void query(int l,int r){
int64 ans=;
int st=bel[l],ed=bel[r];
if (st!=ed){
if (l>block[st].l){
for (int i=l;i<=block[st].r;i++) ans+=query(seg[i].r)-query(seg[i].l-);
st++;
}
if (r<block[ed].r){
for (int i=block[ed].l;i<=r;i++) ans+=query(seg[i].r)-query(seg[i].l-);
ed--;
}
for (int i=st;i<=ed;i++) ans+=res[i];
}
else for (int i=l;i<=r;i++) ans+=query(seg[i].r)-query(seg[i].l-);
printf("%llu\n",ans);
}
int main(){
read(n),siz=sqrt(n);
for (int i=;i<=n;i++){
bel[i]=i/siz+;
if (!block[bel[i]].l) block[bel[i]].l=i;
block[bel[i]].r=i;
}
lim=bel[n];
for (int i=;i<=n;i++) read(a[i]),add(i,a[i]);
for (int i=;i<=n;i++){
if (block[bel[i]].l==i) T.init();
read(l),read(r),seg[i]=(Data){l,r};
T.modify(,,n,l,r);
if (block[bel[i]].r==i) T.get(,,n,bel[i]);
}
for (read(q);q;q--){
read(op),read(x),read(y);
if (op==) modify(x,y);
else query(x,y);
}
return ;
}

CodeChef FNCS的更多相关文章

  1. CodeChef FNCS (分块+树状数组)

    题目:https://www.codechef.com/problems/FNCS 题解: 我们知道要求区间和的时候,我们用前缀和去优化.这里也是一样,我们要求第 l 个函数到第 r 个函数 [l, ...

  2. Chef and Problems(from Code-Chef FNCS) ( 回 滚 )

    题目: 题意:给定序列,求[l,r]区间内数字相同的数的最远距离. 链接:https://www.codechef.com/problems/QCHEF #include<bits/stdc++ ...

  3. CodeChef - FNCS Chef and Churu(分块)

    https://vjudge.net/problem/CodeChef-FNCS 题意: 思路: 用分块的方法,对每个函数进行分块,计算出该分块里每个数的个数,这样的话也就能很方便的计算出这个分块里所 ...

  4. [codechef FNCS]分块处理+树状数组

    题目链接:https://vjudge.net/problem/CodeChef-FNCS 在一个地方卡了一晚上,就是我本来以为用根号n分组,就会分成根号n个.事实上并不是....因为用的是根号n下取 ...

  5. Codechef FNCS Chef and Churu

    Disciption Chef has recently learnt Function and Addition. He is too exited to teach this to his fri ...

  6. ZJOI2019一轮停课刷题记录

    Preface 菜鸡HL终于狗来了他的省选停课,这次的时间很长,暂定停到一试结束,不过有机会二试的话还是可以搞到4月了 这段时间的学习就变得量大而且杂了,一般以刷薄弱的知识点和补一些新的奇怪技巧为主. ...

  7. 【分块+树状数组】codechef November Challenge 2014 .Chef and Churu

    https://www.codechef.com/problems/FNCS [题意] [思路] 把n个函数分成√n块,预处理出每块中各个点(n个)被块中函数(√n个)覆盖的次数 查询时求前缀和,对于 ...

  8. 【BZOJ-3514】Codechef MARCH14 GERALD07加强版 LinkCutTree + 主席树

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1288  Solved: 490 ...

  9. 【BZOJ4260】 Codechef REBXOR 可持久化Trie

    看到异或就去想前缀和(⊙o⊙) 这个就是正反做一遍最大异或和更新答案 最大异或就是很经典的可持久化Trie,从高到低贪心 WA: val&(1<<(base-1))得到的并不直接是 ...

随机推荐

  1. C#中HashTable的用法示例1

    一,哈希表(Hashtable)简述 在.NET Framework中,Hashtable是System.Collections命名空间提供的一个容器,用于处理和表现类似keyvalue的键值对,其中 ...

  2. C# 模拟用户登录

    , data.Length);            newStream.Close();                               request.CookieContainer  ...

  3. JS为Select下拉框添加输入功能

    JavaScript使用parentNode.nextSibling.value实现的本功能,实际上你会发现网页上有两个控件元素,一个是Select,一个是input,使用CSS将input覆盖于se ...

  4. 使用DBOutputFormat把MapReduce产生的结果集导入到mysql中

    数据在HDFS和关系型数据库之间的迁移,主要有以下两种方式 1.按照数据库要求的文件格式生成文件,然后由数据库提供的导入工具进行导入 2.采用JDBC的方式进行导入 MapReduce默认提供了DBI ...

  5. Javascript 函数和模块定义

    匿名函数 // calculator.js(function(root) {  var calculator = {    sum: function(a, b) { return a + b; }  ...

  6. Call Directory Extension 初探

    推荐序 本文介绍了 iOS 10 中的 Call Directory Extension 特性,并且最终 Demo 出一个来电黑名单的 App. 作者:余龙泽,哈工大软件工程大四学生,之前在美图公司实 ...

  7. 10.27 noip模拟试题

    1.铺瓷砖(tile.cpp/c/pas)[问题描述]有一面很长很长的墙. 你需要在这面墙上贴上两行瓷砖. 你的手头有两种不同尺寸的瓷砖,你希望用这两种瓷砖各贴一行.瓷砖的长可以用分数表示,贴在第一行 ...

  8. enter 默认搜索

    onkeydown=" if(event.keyCode==13) Search(); "

  9. GitHub Desktop安装异常解决

    为了更好的共同学习,共同进步,哥们推荐我使用GitHub记录自己每天的学习记录,当下很火的提供一个分布式的版本控制系统(Git)服务的网站,GitHub提供GitHub Desktop桌面程序方便协同 ...

  10. 表达式:使用API创建表达式树(5)

    一.ConditionalExpression:表达式 生成如 IIF((a == b), "a和b相等", "a与b不相等") 式子. 使用: Paramet ...