THIS IS AN EVOLVING WIKI DOCUMENT. If you find an error, or can fill in an empty box, please fix it! If there's something you'd like to see added, just add it.

General Purpose Equivalents

MATLAB

numpy

Notes

help func

info(func) or help(func) or func? (in Ipython)

get help on the function func

which func

(See note 'HELP')

find out where func is defined

type func

source(func) or func?? (in Ipython)

print source for func (if not a native function)

a && b

a and b

short-circuiting logical AND operator (Python native operator); scalar arguments only

a || b

a or b

short-circuiting logical OR operator (Python native operator); scalar arguments only

1*i,1*j,1i,1j

1j

complex numbers

eps

spacing(1)

Distance between 1 and the nearest floating point number

ode45

scipy.integrate.ode(f).set_integrator('dopri5')

integrate an ODE with Runge-Kutta 4,5

ode15s

scipy.integrate.ode(f).\
set_integrator('vode', method='bdf', order=15)

integrate an ODE with BDF

Linear Algebra Equivalents

The notation mat(...) means to use the same expression as array, but convert to matrix with the mat() type converter.

The notation asarray(...) means to use the same expression as matrix, but convert to array with the asarray() type converter.

MATLAB

numpy.array

numpy.matrix

Notes

ndims(a)

ndim(a) or a.ndim

get the number of dimensions of a (tensor rank)

size(a)

shape(a) or a.shape

get the "size" of the matrix

size(a,n)

a.shape[n-1]

get the number of elements of the nth dimension of array a. (Note that MATLAB® uses 1 based indexing while Python uses 0 based indexing, See note 'INDEXING')

[ 1 2 3; 4 5 6 ]

array([[1.,2.,3.],
[4.,5.,6.]])

mat([[1.,2.,3.],
[4.,5.,6.]]) or
mat("1 2 3; 4 5 6")

2x3 matrix literal

[ a b; c d ]

vstack([hstack([a,b]),
        hstack([c,d])])

bmat('a b; c d')

construct a matrix from blocks a,b,c, and d

a(end)

a[-1]

a[:,-1][0,0]

access last element in the 1xn matrix a

a(2,5)

a[1,4]

access element in second row, fifth column

a(2,:)

a[1] or a[1,:]

entire second row of a

a(1:5,:)

a[0:5] or a[:5] or a[0:5,:]

the first five rows of a

a(end-4:end,:)

a[-5:]

the last five rows of a

a(1:3,5:9)

a[0:3][:,4:9]

rows one to three and columns five to nine of a. This gives read-only access.

a([2,4,5],[1,3])

a[ix_([1,3,4],[0,2])]

rows 2,4 and 5 and columns 1 and 3. This allows the matrix to be modified, and doesn't require a regular slice.

a(3:2:21,:)

a[ 2:21:2,:]

every other row of a, starting with the third and going to the twenty-first

a(1:2:end,:)

a[ ::2,:]

every other row of a, starting with the first

a(end:-1:1,:) orflipud(a)

a[ ::-1,:]

a with rows in reverse order

a([1:end 1],:)

a[r_[:len(a),0]]

a with copy of the first row appended to the end

a.'

a.transpose() or a.T

transpose of a

a'

a.conj().transpose() ora.conj().T

a.H

conjugate transpose of a

a * b

dot(a,b)

a * b

matrix multiply

a .* b

a * b

multiply(a,b)

element-wise multiply

a./b

a/b

element-wise divide

a.^3

a**3

power(a,3)

element-wise exponentiation

(a>0.5)

(a>0.5)

matrix whose i,jth element is (a_ij > 0.5)

find(a>0.5)

nonzero(a>0.5)

find the indices where (a > 0.5)

a(:,find(v>0.5))

a[:,nonzero(v>0.5)[0]]

a[:,nonzero(v.A>0.5)[0]]

extract the columms of a where vector v > 0.5

a(:,find(v>0.5))

a[:,v.T>0.5]

a[:,v.T>0.5)]

extract the columms of a where column vector v > 0.5

a(a<0.5)=0

a[a<0.5]=0

a with elements less than 0.5 zeroed out

a .* (a>0.5)

a * (a>0.5)

mat(a.A * (a>0.5).A)

a with elements less than 0.5 zeroed out

a(:) = 3

a[:] = 3

set all values to the same scalar value

y=x

y = x.copy()

numpy assigns by reference

y=x(2,:)

y = x[1,:].copy()

numpy slices are by reference

y=x(:)

y = x.flatten(1)

turn array into vector (note that this forces a copy)

1:10

arange(1.,11.) or 
r_[1.:11.] or 
r_[1:10:10j]

mat(arange(1.,11.))or 
r_[1.:11.,'r']

create an increasing vector see note 'RANGES'

0:9

arange(10.) or 
r_[:10.] or 
r_[:9:10j]

mat(arange(10.)) or 
r_[:10.,'r']

create an increasing vector see note 'RANGES'

[1:10]'

arange(1.,11.)[:, newaxis]

r_[1.:11.,'c']

create a column vector

zeros(3,4)

zeros((3,4))

mat(...)

3x4 rank-2 array full of 64-bit floating point zeros

zeros(3,4,5)

zeros((3,4,5))

mat(...)

3x4x5 rank-3 array full of 64-bit floating point zeros

ones(3,4)

ones((3,4))

mat(...)

3x4 rank-2 array full of 64-bit floating point ones

eye(3)

eye(3)

mat(...)

3x3 identity matrix

diag(a)

diag(a)

mat(...)

vector of diagonal elements of a

diag(a,0)

diag(a,0)

mat(...)

square diagonal matrix whose nonzero values are the elements of a

rand(3,4)

random.rand(3,4)

mat(...)

random 3x4 matrix

linspace(1,3,4)

linspace(1,3,4)

mat(...)

4 equally spaced samples between 1 and 3, inclusive

[x,y]=meshgrid(0:8,0:5)

mgrid[0:9.,0:6.] or 
meshgrid(r_[0:9.],r_[0:6.]

mat(...)

two 2D arrays: one of x values, the other of y values

ogrid[0:9.,0:6.] or 
ix_(r_[0:9.],r_[0:6.]

mat(...)

the best way to eval functions on a grid

[x,y]=meshgrid([1,2,4],[2,4,5])

meshgrid([1,2,4],[2,4,5])

mat(...)

ix_([1,2,4],[2,4,5])

mat(...)

the best way to eval functions on a grid

repmat(a, m, n)

tile(a, (m, n))

mat(...)

create m by n copies of a

[a b]

concatenate((a,b),1) or 
hstack((a,b)) or 
column_stack((a,b)) or 
c_[a,b]

concatenate((a,b),1)

concatenate columns of a and b

[a; b]

concatenate((a,b)) or 
vstack((a,b)) or 
r_[a,b]

concatenate((a,b))

concatenate rows of a and b

max(max(a))

a.max()

maximum element of a (with ndims(a)<=2 for matlab)

max(a)

a.max(0)

maximum element of each column of matrix a

max(a,[],2)

a.max(1)

maximum element of each row of matrix a

max(a,b)

maximum(a, b)

compares a and b element-wise, and returns the maximum value from each pair

norm(v)

sqrt(dot(v,v)) or 
Sci.linalg.norm(v) or 
linalg.norm(v)

sqrt(dot(v.A,v.A))or 
Sci.linalg.norm(v)or 
linalg.norm(v)

L2 norm of vector v

a & b

logical_and(a,b)

element-by-element AND operator (Numpy ufunc) see note 'LOGICOPS'

a | b

logical_or(a,b)

element-by-element OR operator (Numpy ufunc) see note 'LOGICOPS'

bitand(a,b)

a & b

bitwise AND operator (Python native and Numpy ufunc)

bitor(a,b)

a | b

bitwise OR operator (Python native and Numpy ufunc)

inv(a)

linalg.inv(a)

inverse of square matrix a

pinv(a)

linalg.pinv(a)

pseudo-inverse of matrix a

rank(a)

linalg.matrix_rank(a)

rank of a matrix a

a\b

linalg.solve(a,b) if a is square
linalg.lstsq(a,b) otherwise

solution of a x = b for x

b/a

Solve a.T x.T = b.T instead

solution of x a = b for x

[U,S,V]=svd(a)

U, S, Vh = linalg.svd(a), V = Vh.T

singular value decomposition of a

chol(a)

linalg.cholesky(a).T

cholesky factorization of a matrix (chol(a) in matlab returns an upper triangular matrix, but linalg.cholesky(a) returns a lower triangular matrix)

[V,D]=eig(a)

D,V = linalg.eig(a)

eigenvalues and eigenvectors of a

[V,D]=eig(a,b)

V,D = Sci.linalg.eig(a,b)

eigenvalues and eigenvectors of a,b

[V,D]=eigs(a,k)

find the k largest eigenvalues and eigenvectors of a

[Q,R,P]=qr(a,0)

Q,R = Sci.linalg.qr(a)

mat(...)

QR decomposition

[L,U,P]=lu(a)

L,U = Sci.linalg.lu(a) or 
LU,P=Sci.linalg.lu_factor(a)

mat(...)

LU decomposition (note: P(Matlab) == transpose(P(numpy)) )

conjgrad

Sci.linalg.cg

mat(...)

Conjugate gradients solver

fft(a)

fft(a)

mat(...)

Fourier transform of a

ifft(a)

ifft(a)

mat(...)

inverse Fourier transform of a

sort(a)

sort(a) or a.sort()

mat(...)

sort the matrix

[b,I] = sortrows(a,i)

I = argsort(a[:,i]), b=a[I,:]

sort the rows of the matrix

regress(y,X)

linalg.lstsq(X,y)

multilinear regression

decimate(x, q)

Sci.signal.resample(x, len(x)/q)

downsample with low-pass filtering

unique(a)

unique(a)

squeeze(a)

a.squeeze()

Notes

matlab numpy equivalents的更多相关文章

  1. 【搬运】NumPy_for_Matlab_Users

    搬运自:http://scipy.github.io/old-wiki/pages/NumPy_for_Matlab_Users.html. 1.Introduction MATLAB和NumPy/S ...

  2. ubantu16.04+mxnet +opencv+cuda8.0 环境搭建

    ubantu16.04+mxnet +opencv+cuda8.0 环境搭建 建议:环境搭建完成之后,不要更新系统(内核) 转载请注明出处: 微微苏荷 一 我的安装环境 系统:ubuntu16.04 ...

  3. MXNet设计笔记之:深度学习的编程模式比较

    市面上流行着各式各样的深度学习库,它们风格各异.那么这些函数库的风格在系统优化和用户体验方面又有哪些优势和缺陷呢?本文旨在于比较它们在编程模式方面的差异,讨论这些模式的基本优劣势,以及我们从中可以学到 ...

  4. tensorflow 从入门到摔掉肋骨 教程二

    构造你自己的第一个神经网络 通过手势的图片识别图片比划的数字:1) 现在用1080张64*64的图片作为训练集2) 用120张图片作为测试集  定义初始化值 def load_dataset(): ...

  5. 课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第三周(Hyperparameter tuning, Batch Normalization and Programming Frameworks) —— 2.Programming assignments

    Tensorflow Welcome to the Tensorflow Tutorial! In this notebook you will learn all the basics of Ten ...

  6. 分布式机器学习框架:MxNet

    MxNet官网: http://mxnet.readthedocs.io/en/latest/ 前言: caffe是很优秀的dl平台.影响了后面很多相关框架. cxxnet借鉴了很多caffe的思想. ...

  7. 分布式机器学习框架:MxNet 前言

           原文连接:MxNet和Caffe之间有什么优缺点一.前言: Minerva: 高效灵活的并行深度学习引擎 不同于cxxnet追求极致速度和易用性,Minerva则提供了一个高效灵活的平台 ...

  8. 分布式机器学习框架:CXXNet

    caffe是很优秀的dl平台.影响了后面很多相关框架.        cxxnet借鉴了很多caffe的思想.相比之下,cxxnet在实现上更加干净,例如依赖很少,通过mshadow的模板化使得gpu ...

  9. matplotlib基本函数

    数据分析 matlab Numpy + scipy + pandas +matplotlib 数据计算 +科学应用+数据清洗+数据可视化 1 Numpy概述 1 基于c语言的python接口的数值算法 ...

随机推荐

  1. windows下go开发环境部署 (sublime+gosublime+geocode)

    1.下载git.go和sublime免安装版 go下载地址:http://pan.baidu.com/s/1hq1mrDM#path=%252Fgo%252F1.5.2sublime下载地址:http ...

  2. JAVA操作LDAP总结

    一.LDAP概念 LDAP的全称为Lightweight Directory Access Protocol(轻量级目录访问协议), 基于X.500标准, 支持 TCP/IP. LDAP目录为数据库, ...

  3. C#程序员整理的Unity 3D笔记(十):Unity3D的位移、旋转的3D数学模型

    遇到一个想做的功能,但是实现不了,核心原因是因为对U3D的3D数学概念没有灵活吃透.故再次系统学习之—第三次学习3D数学. 本次,希望实现的功能很简单: 如在小地图中,希望可以动态画出Player当前 ...

  4. mysql的1045解决方法

    mysql的连接方式有两种: UNIX域套接字连接,如: mysql -u root -p mysql -h localhost -u root -p TCP/IP套接字连接,如: mysql -h ...

  5. 对Android中dp单位的理解

    dp 设备独立像素 ,也叫dip, device independent pixle. 比如同样在1英寸大小的屏幕上,高密度的屏幕可显示100个像素点,而低密度的屏幕只能70个点. 用了dp之后,只要 ...

  6. linux下python导出sybase 数据库 表记录的方式

    导出sybase 数据库 表记录的方式 1 执行启动sybase 数据库命令 code : dbeng7 gkdb 2 执行 连接sybase 数据库命令code : dbisql -c " ...

  7. javascript学习笔记2

    二.下列哪些变量是不正确的  说明原因 var a1; var b1 = 3; c1 ='good'; var d1 = c1 = e1;   ×  连等必须赋值 var g1 = 'hei' goo ...

  8. DIV CSS布局中position属性用法深入探究

    本文向大家描述一下DIV CSS布局中的position属性的用法,position属性主要有四种属性值,任何元素的默认position的属性值均是static,静态.这节课主要讲讲relative( ...

  9. Magento Api 记录

    magento api 首次接触 (-) /** * magento Api 身份验证 调用示例 * Example of simple product POST using Admin accoun ...

  10. Linux学习笔记2

    1.系统引导配置文件  # vi /boot/grub/grub.conf   default=0   timeout=5   splashimage=(hd0,0)/grub/splash.xpm. ...