THIS IS AN EVOLVING WIKI DOCUMENT. If you find an error, or can fill in an empty box, please fix it! If there's something you'd like to see added, just add it.

General Purpose Equivalents

MATLAB

numpy

Notes

help func

info(func) or help(func) or func? (in Ipython)

get help on the function func

which func

(See note 'HELP')

find out where func is defined

type func

source(func) or func?? (in Ipython)

print source for func (if not a native function)

a && b

a and b

short-circuiting logical AND operator (Python native operator); scalar arguments only

a || b

a or b

short-circuiting logical OR operator (Python native operator); scalar arguments only

1*i,1*j,1i,1j

1j

complex numbers

eps

spacing(1)

Distance between 1 and the nearest floating point number

ode45

scipy.integrate.ode(f).set_integrator('dopri5')

integrate an ODE with Runge-Kutta 4,5

ode15s

scipy.integrate.ode(f).\
set_integrator('vode', method='bdf', order=15)

integrate an ODE with BDF

Linear Algebra Equivalents

The notation mat(...) means to use the same expression as array, but convert to matrix with the mat() type converter.

The notation asarray(...) means to use the same expression as matrix, but convert to array with the asarray() type converter.

MATLAB

numpy.array

numpy.matrix

Notes

ndims(a)

ndim(a) or a.ndim

get the number of dimensions of a (tensor rank)

size(a)

shape(a) or a.shape

get the "size" of the matrix

size(a,n)

a.shape[n-1]

get the number of elements of the nth dimension of array a. (Note that MATLAB® uses 1 based indexing while Python uses 0 based indexing, See note 'INDEXING')

[ 1 2 3; 4 5 6 ]

array([[1.,2.,3.],
[4.,5.,6.]])

mat([[1.,2.,3.],
[4.,5.,6.]]) or
mat("1 2 3; 4 5 6")

2x3 matrix literal

[ a b; c d ]

vstack([hstack([a,b]),
        hstack([c,d])])

bmat('a b; c d')

construct a matrix from blocks a,b,c, and d

a(end)

a[-1]

a[:,-1][0,0]

access last element in the 1xn matrix a

a(2,5)

a[1,4]

access element in second row, fifth column

a(2,:)

a[1] or a[1,:]

entire second row of a

a(1:5,:)

a[0:5] or a[:5] or a[0:5,:]

the first five rows of a

a(end-4:end,:)

a[-5:]

the last five rows of a

a(1:3,5:9)

a[0:3][:,4:9]

rows one to three and columns five to nine of a. This gives read-only access.

a([2,4,5],[1,3])

a[ix_([1,3,4],[0,2])]

rows 2,4 and 5 and columns 1 and 3. This allows the matrix to be modified, and doesn't require a regular slice.

a(3:2:21,:)

a[ 2:21:2,:]

every other row of a, starting with the third and going to the twenty-first

a(1:2:end,:)

a[ ::2,:]

every other row of a, starting with the first

a(end:-1:1,:) orflipud(a)

a[ ::-1,:]

a with rows in reverse order

a([1:end 1],:)

a[r_[:len(a),0]]

a with copy of the first row appended to the end

a.'

a.transpose() or a.T

transpose of a

a'

a.conj().transpose() ora.conj().T

a.H

conjugate transpose of a

a * b

dot(a,b)

a * b

matrix multiply

a .* b

a * b

multiply(a,b)

element-wise multiply

a./b

a/b

element-wise divide

a.^3

a**3

power(a,3)

element-wise exponentiation

(a>0.5)

(a>0.5)

matrix whose i,jth element is (a_ij > 0.5)

find(a>0.5)

nonzero(a>0.5)

find the indices where (a > 0.5)

a(:,find(v>0.5))

a[:,nonzero(v>0.5)[0]]

a[:,nonzero(v.A>0.5)[0]]

extract the columms of a where vector v > 0.5

a(:,find(v>0.5))

a[:,v.T>0.5]

a[:,v.T>0.5)]

extract the columms of a where column vector v > 0.5

a(a<0.5)=0

a[a<0.5]=0

a with elements less than 0.5 zeroed out

a .* (a>0.5)

a * (a>0.5)

mat(a.A * (a>0.5).A)

a with elements less than 0.5 zeroed out

a(:) = 3

a[:] = 3

set all values to the same scalar value

y=x

y = x.copy()

numpy assigns by reference

y=x(2,:)

y = x[1,:].copy()

numpy slices are by reference

y=x(:)

y = x.flatten(1)

turn array into vector (note that this forces a copy)

1:10

arange(1.,11.) or 
r_[1.:11.] or 
r_[1:10:10j]

mat(arange(1.,11.))or 
r_[1.:11.,'r']

create an increasing vector see note 'RANGES'

0:9

arange(10.) or 
r_[:10.] or 
r_[:9:10j]

mat(arange(10.)) or 
r_[:10.,'r']

create an increasing vector see note 'RANGES'

[1:10]'

arange(1.,11.)[:, newaxis]

r_[1.:11.,'c']

create a column vector

zeros(3,4)

zeros((3,4))

mat(...)

3x4 rank-2 array full of 64-bit floating point zeros

zeros(3,4,5)

zeros((3,4,5))

mat(...)

3x4x5 rank-3 array full of 64-bit floating point zeros

ones(3,4)

ones((3,4))

mat(...)

3x4 rank-2 array full of 64-bit floating point ones

eye(3)

eye(3)

mat(...)

3x3 identity matrix

diag(a)

diag(a)

mat(...)

vector of diagonal elements of a

diag(a,0)

diag(a,0)

mat(...)

square diagonal matrix whose nonzero values are the elements of a

rand(3,4)

random.rand(3,4)

mat(...)

random 3x4 matrix

linspace(1,3,4)

linspace(1,3,4)

mat(...)

4 equally spaced samples between 1 and 3, inclusive

[x,y]=meshgrid(0:8,0:5)

mgrid[0:9.,0:6.] or 
meshgrid(r_[0:9.],r_[0:6.]

mat(...)

two 2D arrays: one of x values, the other of y values

ogrid[0:9.,0:6.] or 
ix_(r_[0:9.],r_[0:6.]

mat(...)

the best way to eval functions on a grid

[x,y]=meshgrid([1,2,4],[2,4,5])

meshgrid([1,2,4],[2,4,5])

mat(...)

ix_([1,2,4],[2,4,5])

mat(...)

the best way to eval functions on a grid

repmat(a, m, n)

tile(a, (m, n))

mat(...)

create m by n copies of a

[a b]

concatenate((a,b),1) or 
hstack((a,b)) or 
column_stack((a,b)) or 
c_[a,b]

concatenate((a,b),1)

concatenate columns of a and b

[a; b]

concatenate((a,b)) or 
vstack((a,b)) or 
r_[a,b]

concatenate((a,b))

concatenate rows of a and b

max(max(a))

a.max()

maximum element of a (with ndims(a)<=2 for matlab)

max(a)

a.max(0)

maximum element of each column of matrix a

max(a,[],2)

a.max(1)

maximum element of each row of matrix a

max(a,b)

maximum(a, b)

compares a and b element-wise, and returns the maximum value from each pair

norm(v)

sqrt(dot(v,v)) or 
Sci.linalg.norm(v) or 
linalg.norm(v)

sqrt(dot(v.A,v.A))or 
Sci.linalg.norm(v)or 
linalg.norm(v)

L2 norm of vector v

a & b

logical_and(a,b)

element-by-element AND operator (Numpy ufunc) see note 'LOGICOPS'

a | b

logical_or(a,b)

element-by-element OR operator (Numpy ufunc) see note 'LOGICOPS'

bitand(a,b)

a & b

bitwise AND operator (Python native and Numpy ufunc)

bitor(a,b)

a | b

bitwise OR operator (Python native and Numpy ufunc)

inv(a)

linalg.inv(a)

inverse of square matrix a

pinv(a)

linalg.pinv(a)

pseudo-inverse of matrix a

rank(a)

linalg.matrix_rank(a)

rank of a matrix a

a\b

linalg.solve(a,b) if a is square
linalg.lstsq(a,b) otherwise

solution of a x = b for x

b/a

Solve a.T x.T = b.T instead

solution of x a = b for x

[U,S,V]=svd(a)

U, S, Vh = linalg.svd(a), V = Vh.T

singular value decomposition of a

chol(a)

linalg.cholesky(a).T

cholesky factorization of a matrix (chol(a) in matlab returns an upper triangular matrix, but linalg.cholesky(a) returns a lower triangular matrix)

[V,D]=eig(a)

D,V = linalg.eig(a)

eigenvalues and eigenvectors of a

[V,D]=eig(a,b)

V,D = Sci.linalg.eig(a,b)

eigenvalues and eigenvectors of a,b

[V,D]=eigs(a,k)

find the k largest eigenvalues and eigenvectors of a

[Q,R,P]=qr(a,0)

Q,R = Sci.linalg.qr(a)

mat(...)

QR decomposition

[L,U,P]=lu(a)

L,U = Sci.linalg.lu(a) or 
LU,P=Sci.linalg.lu_factor(a)

mat(...)

LU decomposition (note: P(Matlab) == transpose(P(numpy)) )

conjgrad

Sci.linalg.cg

mat(...)

Conjugate gradients solver

fft(a)

fft(a)

mat(...)

Fourier transform of a

ifft(a)

ifft(a)

mat(...)

inverse Fourier transform of a

sort(a)

sort(a) or a.sort()

mat(...)

sort the matrix

[b,I] = sortrows(a,i)

I = argsort(a[:,i]), b=a[I,:]

sort the rows of the matrix

regress(y,X)

linalg.lstsq(X,y)

multilinear regression

decimate(x, q)

Sci.signal.resample(x, len(x)/q)

downsample with low-pass filtering

unique(a)

unique(a)

squeeze(a)

a.squeeze()

Notes

matlab numpy equivalents的更多相关文章

  1. 【搬运】NumPy_for_Matlab_Users

    搬运自:http://scipy.github.io/old-wiki/pages/NumPy_for_Matlab_Users.html. 1.Introduction MATLAB和NumPy/S ...

  2. ubantu16.04+mxnet +opencv+cuda8.0 环境搭建

    ubantu16.04+mxnet +opencv+cuda8.0 环境搭建 建议:环境搭建完成之后,不要更新系统(内核) 转载请注明出处: 微微苏荷 一 我的安装环境 系统:ubuntu16.04 ...

  3. MXNet设计笔记之:深度学习的编程模式比较

    市面上流行着各式各样的深度学习库,它们风格各异.那么这些函数库的风格在系统优化和用户体验方面又有哪些优势和缺陷呢?本文旨在于比较它们在编程模式方面的差异,讨论这些模式的基本优劣势,以及我们从中可以学到 ...

  4. tensorflow 从入门到摔掉肋骨 教程二

    构造你自己的第一个神经网络 通过手势的图片识别图片比划的数字:1) 现在用1080张64*64的图片作为训练集2) 用120张图片作为测试集  定义初始化值 def load_dataset(): ...

  5. 课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第三周(Hyperparameter tuning, Batch Normalization and Programming Frameworks) —— 2.Programming assignments

    Tensorflow Welcome to the Tensorflow Tutorial! In this notebook you will learn all the basics of Ten ...

  6. 分布式机器学习框架:MxNet

    MxNet官网: http://mxnet.readthedocs.io/en/latest/ 前言: caffe是很优秀的dl平台.影响了后面很多相关框架. cxxnet借鉴了很多caffe的思想. ...

  7. 分布式机器学习框架:MxNet 前言

           原文连接:MxNet和Caffe之间有什么优缺点一.前言: Minerva: 高效灵活的并行深度学习引擎 不同于cxxnet追求极致速度和易用性,Minerva则提供了一个高效灵活的平台 ...

  8. 分布式机器学习框架:CXXNet

    caffe是很优秀的dl平台.影响了后面很多相关框架.        cxxnet借鉴了很多caffe的思想.相比之下,cxxnet在实现上更加干净,例如依赖很少,通过mshadow的模板化使得gpu ...

  9. matplotlib基本函数

    数据分析 matlab Numpy + scipy + pandas +matplotlib 数据计算 +科学应用+数据清洗+数据可视化 1 Numpy概述 1 基于c语言的python接口的数值算法 ...

随机推荐

  1. [转]十年前的老文:以 Linux 的名义

    一.灰姑娘的狂欢 今年初,林纳斯·托瓦兹承认:“如果在12年前,有人告诉我Linux会发展到今天的模样,我肯定会惊得目瞪口呆.” 托瓦兹说的是实话.1991年,这名21岁的芬兰赫尔辛基大学的学生,偶然 ...

  2. infopath 之绑定列表 数据源

    在psd中启动infopath更新表单模版 注:虽然可能在infopath design中预览的时候会报错说是跨域数据不能加载,别理他 继续发布上站点就不会有这个错误了. 绑定list后效果: 参考u ...

  3. js个人笔记

    一.删除元素 <!DOCTYPE html> <html> <head> <title>删除元素</title> </head> ...

  4. HDU 1069 Monkey and Banana(动态规划)

    Monkey and Banana Problem Description A group of researchers are designing an experiment to test the ...

  5. 使用C++11安全的在线程中控制UI

    本篇文章由:http://www.sollyu.com/using-the-c11-secure-online-process-control-ui/ 说明 首先这里使用的是 Visual Studi ...

  6. hdu 5009 Paint Pearls

    首先把具有相同颜色的点缩成一个点,即数据离散化. 然后使用dp[i]表示涂满前i个点的最小代价.对于第i+1个点,有两种情况: 1)自己单独涂,即dp[i+1] = dp[i] + 1 2)从第k个节 ...

  7. 排序算法ONE:选择排序SelectSort

    /** *选择排序: * 对冒泡排序的一个改进 * 进行一趟排序时,不用每一次都交换,只需要把最大的标示记下 * 然后再进行一次交换 */ public class SelectSort { /** ...

  8. Unity3D--学习太空射击游戏制作(二)

    步骤三:创建主角 游戏的主角是一艘太空飞船,我们将使用一个飞船模型作为游戏的主角,并赋予他一个脚本,控制他的运动,游戏体的组件必须依赖于脚本才能运行. 01:在Project窗口找到Player.fb ...

  9. 数列 COGS1048:[Citric S2] 一道防AK好题

    [题目描述] Czy手上有一个长度为n的数列,第i个数为xi. 他现在想知道,对于给定的a,b,c,他要找到一个i,使得a*(i+1)*xi2+(b+1)*i*xi+(c+i)=0成立. 如果有多个i ...

  10. C# - implicit, explicit

    如果类型直接没有继承关系,也没有共享接口,想在这两个类型之间进行转换,就必须重载转换运算符. 此时需要关键字implicit和explicit. 下面定义了类型ConvClass1和ConvClass ...