http://www.lydsy.com/JudgeOnline/problem.php?id=1001

思路:这应该算是经典的最大流求最小割吧。不过题目中n,m<=1000,用最大流会TLE,所以要利用平面图的一些性质。

这里讲一下平面图的对偶图性质。

在平面图中,所有边将图分成了n个平面。我们将平面标号,对于原图中的每条边,在与之相邻的两个平面间连一条边,最后得到的图就是原图的对偶图。

对偶图有如下性质:

1、对偶图的边数与原图相等。

2、对偶图中的每个环对应原图中的割。

于是可以在原图中的s和t间再连一条边,得到对偶图,用spfa求一次最短路就是答案。

具体可以参考http://wenku.baidu.com/link?url=87F10nBWauMdSF-PaKHoG-3fZj0jFE63P6pHSeX6ZiguQqXOQxm41iLWW5IdZCp2MWFQ8JghamfeI68PtLqEv_JSWapGp5z415gNoYb031u

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
#define INF 1000000000
struct edge{
int p,to;
edge(int p=,int to=):p(p),to(to){};
};
vector<edge>g[];
queue<int>q;
int i,j,k,n,m,s,t,x,y,d[];
void spfa(){
for(int i=;i<=t;i++)d[i]=INF;
q.push();
while(!q.empty()){
int x=q.front();q.pop();
for(int i=;i<g[x].size();i++){
edge e=g[x][i];
if(d[x]+e.p<d[e.to]){
d[e.to]=d[x]+e.p;
q.push(e.to);
}
}
}
}
int main()
{
scanf("%d%d",&n,&m);
if(n==){
int minn=INF;
for(i=;i<m;i++){
scanf("%d",&x);
minn=min(minn,x);
}
printf("%d\n",minn);
return ;
}else if(m==){
int minn=INF;
for(i=;i<n;i++){
scanf("%d",&x);
minn=min(minn,x);
}
printf("%d\n",minn);
return ;
}
t=(n-)*(m-)*+;
for(i=;i<=n;i++)
for(j=;j<m;j++){
scanf("%d",&k);
x=(i-)*(m-)*+j*;
y=(i-)*(m-)*+j*+;
if(i==)x=;else if(i==n)y=t;
g[x].push_back(edge(k,y));
g[y].push_back(edge(k,x));
}
for(i=;i<n;i++)
for(j=;j<=m;j++){
scanf("%d",&k);
x=(i-)*(m-)*+j*-;
y=x+;
if(j==)x=t;else if(j==m)y=;
g[x].push_back(edge(k,y));
g[y].push_back(edge(k,x));
}
for(i=;i<n;i++)
for(j=;j<m;j++){
scanf("%d",&k);
x=(i-)*(m-)*+j*;
y=x+;
g[x].push_back(edge(k,y));
g[y].push_back(edge(k,x));
}
spfa();
printf("%d\n",d[t]);
return ;
}

bzoj1001--最大流转最短路的更多相关文章

  1. 【bzoj1001】【最短路】【对偶图】【最大流转最小割】狼抓兔子题解

    [BZOJ1001]狼抓兔子 1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 18872  Solved ...

  2. [bzoj1001][BJOI2006]狼抓兔子——最大流转最短路,平面图

    题目描述: 给定一个平面图,求最小割. 题解: 本题是一道经典题. 周冬Orz的论文是很好的研究资料. 这道题点太多,所以直接跑dinic无疑会超时. 我们观察原图,发现原图是一个平面图. 什么是平面 ...

  3. BZOJ1001 狼抓兔子(网络流转最短路:对偶图)

    题意: 给一个如图形式的\(n*m\)的方格,从左上走到右下,给出边权,问分成两块所需的最小代价.\(n,m\leq1000\). 思路: 显然是个最小割,但是\(O(n^2m)\)的复杂度很高,虽然 ...

  4. bzoj1001(对偶图最短路)

    显然是个最大流问题. 边数达到了10^6级别,显然用dinic算法会TLE 对于一个平面图来说,当然用对偶图的最短路来求最小割(最大流) SPFA转移的时候注意判断边界情况 应该要开longlong才 ...

  5. 刷题向》图论》BZOJ1001 平面图最大流、平面图最小割、单源最短路(easy+)

    坦白的说这是一道水题,但是因为是BZOJ上的1001,所以这道题有着特殊的意义. 关于最大流转最短路的博客链接如下:关于最大流转最短路两三事 这道题的图形很规矩,所以建边和建点还是很简单的. 题目如下 ...

  6. PencilWang博客目录

    在这里有一坨目录,以后自己和别人看随笔都会方便很多 一 .刷题相关 1.BZOJ BZOJ1001(最大流,最短路)(EASY+)   BZOJ1002(数学)(NORMAL+)  BZOJ1003( ...

  7. 转自 Good morning 的几句精辟的话

    1.志愿者招募 根据流量平衡方程来构图非常方便,而且简单易懂,以后可能成为做网络流的神法之一 简单记一下流量平衡方程构图法的步骤: a.列出需求不等式 b.通过设置松弛变量,将不等式变成等式 c.两两 ...

  8. BZOJ1001 [BeiJing2006]狼抓兔子 最小割 对偶图 最短路

    原文链接http://www.cnblogs.com/zhouzhendong/p/8686871.html 题目传送门 - BZOJ1001 题意 长成上面那样的网格图求最小割. $n,m\leq ...

  9. BZOJ1001 BJOI2006狼抓兔子(最小割+最短路)

    显然答案就是最小割.直接跑dinic也能过,不过显得不太靠谱. 考虑更正确的做法.作为一个平面图,如果要把他割成两半,那么显然可以用一条曲线覆盖且仅覆盖所有割边.于是我们把空白区域看成点,隔开他们的边 ...

随机推荐

  1. Sass之坑Compass编译报错

    前段时间在使用Compass时遇到了其为难处理的一个坑,现记录到博客希望能帮助到各位. 一.问题: 利用Koala或者是gulp编译提示如下,截图为koala编译提示错误: 二.解决办法 从问题截图上 ...

  2. (转载) RESTful API 设计指南

    作者: 阮一峰 日期: 2014年5月22日 网络应用程序,分为前端和后端两个部分.当前的发展趋势,就是前端设备层出不穷(手机.平板.桌面电脑.其他专用设备......). 因此,必须有一种统一的机制 ...

  3. CentOS 7 修改主机名

    今天在阿里云上买了一个centos7的服务器,连接上以后,发现一个很长很长的主机名,看着让人很是不爽,就想着怎样将其改成一个有个性的名字. 这里我想说的是,在centos7 版本的linux系统上和c ...

  4. Win10命令提示符(cmd)怎么复制粘贴

    在Win10系统里右键开始菜单,选择弹出菜单里的命令提示符,如下图所示: 然后复制要粘贴的文字,例如: echo hovertree.com 把上面的文字复制后,点击命令提示符窗口,然后在命令提示符窗 ...

  5. 【AutoMapper官方文档】DTO与Domin Model相互转换(中)

    写在前面 AutoMapper目录: [AutoMapper官方文档]DTO与Domin Model相互转换(上) [AutoMapper官方文档]DTO与Domin Model相互转换(中) [Au ...

  6. 【深入浅出jQuery】源码浅析2--奇技淫巧

    最近一直在研读 jQuery 源码,初看源码一头雾水毫无头绪,真正静下心来细看写的真是精妙,让你感叹代码之美. 其结构明晰,高内聚.低耦合,兼具优秀的性能与便利的扩展性,在浏览器的兼容性(功能缺陷.渐 ...

  7. 在 Linux 中使用 Eclipse 和 Gnu Autotools 管理 C/C++ 项目

    在我该系列的之前的所有随笔中,都是采用 Linux 发行版自带的包管理工具(如 apt-get.yum 等)进行软件的安装和卸载,从来没有向大家展示使用源代码自行编译安装软件的方法.但是长期混迹于 U ...

  8. docker创建私有仓库

    由于网速和大中华局域网效果,使得我们在DockerHub下载镜像的速度很慢,甚至一些国内的镜像仓库,也感觉速度不是很好.所以,很有必要在本地或者一个我们访问很快速的地方(自己的云服务器)搭建一套镜像仓 ...

  9. 迟来的Json反序列化

    源码发布 搞了一个下午,终于搞定了这个号称中国的github...以后源码直接在这里发布了(github实在用不来,英文实在太烂了) https://code.csdn.net/jy02305022/ ...

  10. 【翻译】用AIML实现的Python人工智能聊天机器人

    前言 用python的AIML包很容易就能写一个人工智能聊天机器人. AIML是Artificial Intelligence Markup Language的简写, 但它只是一个简单的XML. 下面 ...