Unidirectional TSP

Problem Description
Problems that require minimum paths through some domain appear in many different areas of computer science. For example, one of the constraints in VLSI routing problems is minimizing wire length. The Traveling Salesperson Problem (TSP) -- finding whether all the cities in a salesperson's route can be visited exactly once with a specified limit on travel time -- is one of the canonical examples of an NP-complete problem; solutions appear to require an inordinate amount of time to generate, but are simple to check.

This problem deals with finding a minimal path through a grid of points while traveling only from left to right.

Given an m*n matrix of integers, you are to write a program that computes a path of minimal weight. A path starts anywhere in column 1 (the first column) and consists of a sequence of steps terminating in column n (the last column). A step consists of traveling from column i to column i+1 in an adjacent (horizontal or diagonal) row. The first and last rows (rows 1 and m) of a matrix are considered adjacent, i.e., the matrix ``wraps'' so that it represents a horizontal cylinder. Legal steps are illustrated below.

The weight of a path is the sum of the integers in each of the n cells of the matrix that are visited.

For example, two slightly different 5*6 matrices are shown below (the only difference is the numbers in the bottom row).

The minimal path is illustrated for each matrix. Note that the path for the matrix on the right takes advantage of the adjacency property of the first and last rows.

Input
The input consists of a sequence of matrix specifications. Each matrix specification consists of the row and column dimensions in that order on a line followed by integers where m is the row dimension and n is the column dimension. The integers appear in the input in row major order, i.e., the first n integers constitute the first row of the matrix, the second n integers constitute the second row and so on. The integers on a line will be separated from other integers by one or more spaces. Note: integers are not restricted to being positive. There will be one or more matrix specifications in an input file. Input is terminated by end-of-file.

For each specification the number of rows will be between 1 and 10 inclusive; the number of columns will be between 1 and 100 inclusive. No path's weight will exceed integer values representable using 30 bits

 
Output
Two lines should be output for each matrix specification in the input file, the first line represents a minimal-weight path, and the second line is the cost of a minimal path. The path consists of a sequence of n integers (separated by one or more spaces) representing the rows that constitute the minimal path. If there is more than one path of minimal weight the path that is lexicographically smallest should be output.

 
Sample Input
5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 8 6 4
5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 1 2 3
2 2
9 10
9 10
 
Sample Output
1 2 3 4 4 5
16
1 2 1 5 4 5
11
1 1
19
 
题目大意:给定一个n*m的矩阵,从第一列的任何一个位置出发,到最后一列的任何一个位置终止,每一次只能往下一列走,走直线或者对角线,求出最小权值,以及打印字典序最小路径。
 
分析:状态转移很简单,就是取右上,右,右下的最小值。但因为要打印路径,从前往后打印,所以最左边应该是最终结果,就要从右往左循环,这样状态转移也就变成了取左上,左,左下的最小值。具体见代码。
 
代码如下:
 # include<stdio.h>
# include<string.h>
# include<iostream>
using namespace std;
# define inf 0xffffff
int map[][];
int p[][];
int s[];
int main()
{
int m,n,i,j;
while(scanf("%d%d",&m,&n)!=EOF)
{
memset(p,-,sizeof(p));
for(i=; i<=m; i++)
for(j=; j<=n; j++)
scanf("%d",&map[i][j]);
for(j=n-; j>=; j--) //从后往前计算,因为要打印路径
for(i=; i<=m; i++)
{
int b=i,a,c,d,e=-; //a,b,c分别为向左上,向左,向左下的坐标
if(i>=) a=i-;
else a=m;
if(i<m) c=i+;
else c=;
d = min(min(map[a][j+],map[b][j+]),map[c][j+]); //取最小值
map[i][j] += d;
if(d==map[a][j+]) e=a;
if(d==map[b][j+]&&(e==-||(e!=-&&b<e))) e=b; //e的作用当两行的数字相同时去小的一个
if(d==map[c][j+]&&(e==-||(e!=-&&c<e))) e=c;
p[i][j] = e; //记录路径
}
int flag = ;
int sum =inf;
for(i=; i<=m; i++)
if(map[i][] < sum)
{
sum = map[i][];
flag=i;
}
printf("%d",flag);
flag = p[flag][];
for(i=; i<=n && flag != -; i++)
{
printf(" %d",flag);
flag = p[flag][i];
}
printf("\n%d\n",sum);
}
return ;
}

HDU 1619 Unidirectional TSP(单向TSP + 路径打印)的更多相关文章

  1. UVA116 Unidirectional TSP 单向TSP

    分阶段的DAG,注意字典序的处理和路径的保存. 定义状态d[i][j]为从i,j 出发到最后一列的最小花费,转移的时候只有三种,向上,向下,或平移. #include<bits/stdc++.h ...

  2. UVa116 (单向TSP,多决策问题)

    /*----UVa1347 单向TSP 用d(i,j)表示从格子(i,j)出发到最后一列的最小开销 则在(i,j)处有三种决策,d(i,j)转移到d(i-1,j+1),d(i,j+1),d(i+1,j ...

  3. ZOJ 1076 Gene Assembly(LIS+路径打印 贪心)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=76 题目大意:在一个DNA上,给定许多基因的起始位置和结束位置,求出这 ...

  4. L2-001 紧急救援 (25 分) (最短路+路径打印)

    链接:https://pintia.cn/problem-sets/994805046380707840/problems/994805073643683840 题目: 作为一个城市的应急救援队伍的负 ...

  5. HDU 6311 Cover (无向图最小路径覆盖)

    HDU 6311 Cover (无向图最小路径覆盖) Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/ ...

  6. Minimum Transport Cost HDU1385(路径打印)

    最短路的路径打印问题 同时路径要是最小字典序 字典序用floyd方便很多 学会了两种打印路径的方法!!! #include <stdio.h> #include <string.h& ...

  7. POJ 3984 迷宫问题(简单bfs+路径打印)

    传送门: http://poj.org/problem?id=3984 迷宫问题 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions ...

  8. 代码实现:从键盘输入接收一个文件夹路径,打印出该文件夹下所有的.java文件名

    package com.loaderman.test; import java.io.File; import java.io.FileReader; import java.util.Scanner ...

  9. uva 116 Unidirectional TSP【号码塔+打印路径】

    主题: uva 116 Unidirectional TSP 意甲冠军:给定一个矩阵,当前格儿童值三个方向回格最小值和当前的和,就第一列的最小值并打印路径(同样则去字典序最小的). 分析:刚開始想错了 ...

随机推荐

  1. 微软Azure运营方世纪互联遭做空后强劲反弹

    http://www.cnblogs.com/sennly/p/4135594.html 最近几天微软Azure的运营方世纪互联被Trinity做空,股价震荡巨大,先让我们回顾下整个事件: 9月11日 ...

  2. c语言之sizeof总结

    一.sizeof的概念 Sizeof是C语言的一种单目操作符,如C语言的其他操作符++.--等.它并不是函数.Sizeof操作符以字节形式给出了其操作数的存储大小.操作数可以是一个表达式或括在括号内的 ...

  3. git 初级

    以前工作中用到git,但没有总结,这次借鉴其它博客加上自己实践,总结git的简单用法 首先安装.... 打开一个文件右击git bash 弹出来一个jit界面 git config http.post ...

  4. MINA之心跳协议运用

    转自:http://my.oschina.net/yjwxh/blog/174633 摘要 心跳协议,对基于CS模式的系统开发来说是一种比较常见与有效的连接检测方式,最近在用MINA框架,原本自己写了 ...

  5. C++中随机函数

    #include <iostream> using namespace std; #include <stdlib.h> #include <time.h> int ...

  6. 2014上海全国邀请赛题解 HDOJ 5090-5099

    HDOJ 5090 水题.从小到大排序,能够填充达到符合条件的.先填充好.填充之后进行调整. 传送门:pid=5090">点击打开链接 #include <cstdio> ...

  7. sqrt 源代码

    stap -v -e 'probe process("/usr/local/mysql56/bin/mysqld").function("*@/usr/src/mysql ...

  8. textLayout_1.0.0.595.swz

    使用ai制作的矢量素材,导出到flash里面.生成swf时.有的时候会多一个textLayout_1.0.0.595.swz的文件. 这会导致导出的swf无法加载使用.会显示不出来. 解决办法是: 检 ...

  9. VS C# 快捷键

    解决VS2010中工具箱的的不见的问题:按快捷键Ctrl+Alt+X 全屏:Shift+Alt+Enter注释选定内容:Ctrl+E+C/Crtr+E+U代码格式化:ctrl+E+F ======== ...

  10. Eclipse启动时报需要安装"Java SE 6 Runtime"致无法启动解决方案

    今天心血来潮,把MBP升级到了osx mavericks,然后启动了闲置好久的eclipse,启动时居然报错了: 若要打开Eclipse.app,您需要Java SE 6 runtime,您想现在安装 ...