Maximum Subarray 



Find the contiguous subarray within an array (containing at least one number) which has the largest sum.



For example, given the array [−2,1,−3,4,−1,2,1,−5,4],

the contiguous subarray [4,−1,2,1] has the largest sum = 6.



click to show more practice.



More practice:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

思路:这题在刚開始想用双指针解,可是码代码的时候发现双指针不行,感觉不是非常难的一个题。最后还是要求助网上资料。经过翻找,一个非常好的博文详解了本题的算法思想。非常清晰,故摘录在下:

http://blog.csdn.net/joylnwang/article/details/6859677
又一个经典问题。对于一个包括负值的数字串array[1...n],要找到他的一个子串array[i...j](0<=i<=j<=n),使得在array的全部子串中。array[i...j]的和最大。

这里我们须要注意子串和子序列之间的差别。

子串是指数组中连续的若干个元素。而子序列仅仅要求各元素的顺序与其在数组中一致,而没有连续的要求。对于一个元素数为n的数组,其含有2^n个子序列和n(n+1)/2个子串。假设使用穷举法,则至少须要O(n^2)的时间才干得到答案。卡耐基梅隆大学的Jay Kadane的给出了一个线性时间算法,我们就来看看。怎样在线性时间内解决最大子串和问题。

要说明Kadane算法的正确性,须要两个结论。

首先。对于array[1...n],假设array[i...j]就是满足和最大的子串,那么对于不论什么k(i<=k<=j),我们有array[i...k]的和大于0。因为假设存在k使得array[i...k]的和小于0。那么我们就有array[k+1...j]的和大于array[i...j],这与我们假设的array[i...j]就是array中和最大子串矛盾。

其次,我们能够将数组从左到右切割为若干子串,使得除了最后一个子串之外,其余子串的各元素之和小于0,且对于全部子串array[i...j]和随意k(i<=k<j)。有array[i...k]的和大于0。

此时我们要说明的是。满足条件的和最大子串,仅仅能是上述某个子串的前缀。而不可能跨越多个子串。我们假设array[p...q]。是array的和最大子串,且array[p...q]。跨越了array[i...j],array[j+1...k]。依据我们的分组方式,存在i<=m<j使得array[i...m]的和是array[i...j]中的最大值,存在j+1<=n<k使得array[j+1...n]的和是array[j+1...k]的最大值。

因为array[m+1...j]使得array[i...j]的和小于0。此时我们能够比較array[i...m]和array[j+1...n]。假设array[i...m]的和大于array[j+1...n]则array[i...m]>array[p...q]。否array[j+1...n]>array[p...q]。不管谁大,我们都能够找到比array[p...q]和更大的子串。这与我们的假设矛盾。所以满足条件的array[p...q]不可能跨越两个子串。

对于跨越很多其它子串的情况,因为各子串的和均为负值。所以相同能够证明存在和更大的非跨越子串的存在。

对于单元素和最大的特例,该结论也适用。

依据上述结论,我们就得到了Kadane算法的运行流程,从头到尾遍历目标数组,将数组切割为满足上述条件的子串,同一时候得到各子串的最大前缀和,然后比較各子串的最大前缀和,得到终于答案。我们以array={−2, 1, −3, 4, −1, 2, 1, −5, 4}为例,来简单说明一下算法步骤。通过遍历。能够将数组切割为例如以下3个子串(-2)。(1。-3),(4。-1,2,1,-5,4)。这里对于(-2)这种情况。单独分为一组。各子串的最大前缀和为-2,1,6,所以目标串的最大子串和为6。

我的代码,上面博文的代码有些繁琐。

public class Solution {
public int maxSubArray(int[] nums) {
int max = Integer.MIN_VALUE;//设置最小值
int sum = 0;//每一个分组的和
int i = 0;
while(i < nums.length){
sum += nums[i];//每一个分组的前n项和
if(max < sum){
max = sum;//取最大和
}
if(sum < 0){//假设<0。分组结束,開始下一组
sum = 0;
}
i++;
}
return max;
}
}

leetCode 53.Maximum Subarray (子数组的最大和) 解题思路方法的更多相关文章

  1. [array] leetcode - 53. Maximum Subarray - Easy

    leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...

  2. 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略

    原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...

  3. 【剑指Offer】连续子数组的最大和 解题报告(Python)

    [剑指Offer]连续子数组的最大和 解题报告(Python) 标签(空格分隔): 剑指Offer 题目地址:https://www.nowcoder.com/ta/coding-interviews ...

  4. 41. leetcode 53. Maximum Subarray

    53. Maximum Subarray Find the contiguous subarray within an array (containing at least one number) w ...

  5. Leetcode#53.Maximum Subarray(最大子序和)

    题目描述 给定一个序列(至少含有 1 个数),从该序列中寻找一个连续的子序列,使得子序列的和最大. 例如,给定序列 [-2,1,-3,4,-1,2,1,-5,4], 连续子序列 [4,-1,2,1] ...

  6. LN : leetcode 53 Maximum Subarray

    lc 53 Maximum Subarray 53 Maximum Subarray Find the contiguous subarray within an array (containing ...

  7. leetcode 53. Maximum Subarray 、152. Maximum Product Subarray

    53. Maximum Subarray 之前的值小于0就不加了.dp[i]表示以i结尾当前的最大和,所以需要用一个变量保存最大值. 动态规划的方法: class Solution { public: ...

  8. [LeetCode] 53. Maximum Subarray 最大子数组

    Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...

  9. C#解leetcode 53.Maximum Subarray

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

随机推荐

  1. Django中国|Django中文社区——python、django爱好者交流社区

    Django中国致力于成为Python和Django框架等技术的中文开发者学习交流平台. 内容涵盖python教程.python基础.Django教程.python入门.web.py教程.linux教 ...

  2. iBatis系列一

    XML iBatis可以使用xml来作为参数输入以及结果返回:这个功能的优势在于某些特定的场景:还有可以通过DOM方式来作为参数传递:但是这个方式应用的比较少,如果服务器是xml服务器可以采用这种方式 ...

  3. C语言中.h和.c文件解析(很精彩)

    C语言中.h和.c文件解析(很精彩)   简单的说其实要理解C文件与头文件(即.h)有什么不同之处,首先需要弄明白编译器的工作过程,一般说来编译器会做以下几个过程: 1.预处理阶段 2.词法与语法分析 ...

  4. Android njava.net.UnknownHostException: Unable to resolve host

    我在android开发的时候经常会遇到这个错误,一般来说,造成这种错误的最普遍情况有两种:  1.android设备网络连接没打开,例如3G网络和WIFI网络 所以,如果遇到这种错误时,请先查看网络是 ...

  5. 李洪强iOS开发Swift篇—09_属性

    李洪强iOS开发Swift篇—09_属性 一.类的定义 Swift与Objective-C定义类的区别 Objective-C:一般需要2个文件,1个.h声明文件和1个.m实现文件 Swift:只需要 ...

  6. com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: SELECT command denied to user’

    Linux环境 Mysql+Hibernate command denied to user 错误 错误信息 如下: com.mysql.jdbc.exceptions.jdbc4.MySQLSynt ...

  7. java基于xml配置的通用excel单表数据导入组件(一、实际应用过程)

    主要应用技术:poi + betwixt + reflect 一.实际应用过程 1.创建与目标表结构一样,表名为‘{目标表名}_import’的临时表: 2.创建用于存储导入问题数据的表:t_impo ...

  8. Cookies和Session理论总结

    今天主要学习了Cookies和Session,网络上关于这方面的知识可谓很多,让人眼花缭乱,在此作一个小结.本文不讲多,不讲什么高大上的,只是抛出一块砖,讲三个问题:①什么是Cookies和Sessi ...

  9. (转载)在mysql中,column 'id' in field list is ambiguous

    (转载)http://blog.chinaunix.net/uid-20665047-id-3137284.html column 'id' in field list is ambiguous 这个 ...

  10. [转]NHibernate之旅(1):开篇有益

    本节内容 NHibernate是什么 NHibernate的架构 NHibernate资源 欢迎加入NHibernate中文社区 作者注:2009-11-06已更新 NHibernate开篇有益 学习 ...