IoT databases should be as flexible as required by the application. NoSQLdatabases -- especially key-value, document and column family databases -- easily accommodate different data types and structures without the need for predefined, fixed schemas. NoSQL databases are good options when an organization has multiple data types and those data types will likely change over time. In other cases, applications that collect a fixed set of data -- such as data on weather conditions -- may benefit from a relational model. In-memory SQL databases, such as MemSQL, offer this benefit.

Managing a database for IoT applications in-house

For those organizations choosing to manage their own databases, DataStax Cassandra is a highly scalable distributed database that supports a flexible big table schema and fast writes and scales to large volumes of data. Riak IoT is a distributed, highly scalable key-value data store which integrates with Apache Spark, a big data analytics platform that enables stream analytic processing. Cassandra also integrates with Spark as well as other big data analytics platforms, such as Hadoop MapReduce.

OpenTSDB is an open source database capable of running on Hadoop andHBase. The database is made up of command line interfaces and a Time Series Daemon (TSD). TSDs, which are responsible for processing all database requests, run independently of one another. Even though TSDs use HBase to store time-series data, TSD users have little to no contact with HBase itself.

MemSQL is a relational database tuned for real-time data streaming. With MemSQL, streamed data, transactions and historical data can be kept within the same database. The database also has the capacity to work well with geospatial data out of the box, which could be useful for location-based IoT applications. MemSQL supports integration with Hadoop Distributed File System and Apache Spark, as well as other data warehousing solutions.

摘自:http://internetofthingsagenda.techtarget.com/feature/Find-the-IoT-database-that-best-fits-your-enterprises-needs

You’ve heard the hype, the Internet of Things (IoT) is going to connect more people to devices, more devices to the Internet and generate more data than any major IT shift in history. IoT is going to be bigger than the web, mobile and the cloud, right? It’s still too early to tell for sure, but at InfluxData we are helping startups and enterprises everyday bring an interconnected world closer to reality.

What does time-series have to do with IoT? Everything, actually. Sensors and devices used in IoT architectures emit time-series data, and a lot of it.

Why are companies building IoT and sensor data solutions?

Whether it’s pH and humidity readings from an agri-sensor, depth and fluid readings from a geo-sensor or voltage and temperature from a power control sensor, these metrics are forming the basis of intelligent businesses. Common use cases we run across are:

  • Agro industries are monitoring and trying to control environmental conditions for optimal plant growth.
  • Power and utility companies are building smart solutions to reduce resource wastage for residential and commercial customers.
  • Research labs and heavy industries are tracking the resources, usage and health of millions of tiny valves and instruments that go into their massive production plants, factories and manufacturing facilities.
  • Smart cars are now powerful computers making runtime decisions based on data collected by 100s of sensors on every vehicle.

Challenges in building IoT and sensor data solutions

The key challenges organizations face while building an IoT solution are:

  • Bandwidth – As sensors are generally deployed on-premise and need to communicate over wireless networks, bandwidth constraints prevent sending large packets of data in real-time
  • Horsepower – Compute power on sensors are generally limited. Hence analytics software – programs or databases or even processing logic needs to have a tiny footprint.
  • Concurrency – In case of industrial IoT, number of sensors could easily range in 100s of 1000s, each transmitting metrics every minute or so. Anticipating backend database’s concurrency limits is crucial in the design of such solutions
  • Protocol – As this space is rapidly evolving, there aren’t any definitive standards for communication protocols. MQTT, AMQPP, CoAP etc are being used based on use cases. Hence IoT analytics solutions need to support many communication protocols.
  • Scale – Data retention, compression and visualization has it’s own challenges in such a large data footprint solution. Businesses want to plot trends (WoW, MoM, YoY) and aggregation of massive data sets can be very compute heavy.

摘自:https://www.influxdata.com/use-cases/iot-and-sensor-data/

NoSQL Database: The NoSQL database is typically used to address the fast data ingest problem for device data. In some cases, there may be a stream processor—e.g. Storm, Samza, Kinesis, etc.—addressing data filtering and routing and some lightweight processing, such as counts. However, the NoSQL database is typically used because, unlike most SQL databases, which top out at about 5,000 inserts/second, you can get up to 50,000 inserts/second from NoSQL databases. However, NoSQL databases are not designed to handle the analytic processing of the data or joins, which are common requirements for Internet of Things applications. NoSQL effectively provides a real-time data ingest engine for data that is then moved to Hadoop using an extract, transform and load (ETL) process.——NOSQL写入快,但是数据分析,联合查询不方便!

IOT数据库选型——NOSQL,MemSQL,cassandra,Riak或者OpenTSDB,InfluxDB的更多相关文章

  1. nosql数据库选型

    http://blogread.cn/it/article/6654 今天在书店里翻完了一遍<七天七数据库>.这本书简单介绍了postgreSQL,riak,mongodb,HBase,r ...

  2. 一文读懂非关系型数据库(NoSQL)

    为了更好的理解非关系型数据库,我又深入的度娘了下 原文地址:https://baijiahao.baidu.com/po/feed/share?wfr=spider&for=pc&co ...

  3. 非关系型数据库(NoSql)

    最近了解了一点非关系型数据库,刚刚接触,觉得这是一个很好的方向,对于大数据 方面的处理,非关系型数据库能起到至关重要的地位.这里我主要是整理了一些前辈的经验,仅供参考. 关系型数据库的特点 1.关系型 ...

  4. 关系型数据库 VS NOSQL

    转载:https://mp.weixin.qq.com/s/FkoOMY8_vnqSPPTHc2PL1w 行式数据库(关系型数据库) 行式数据库有如下几个缺点: 大数据场景下 I/O 较高,因为数据是 ...

  5. 非关系型数据库(NOSQL)和关系型数据库(SQL)区别详解

    前言: 在我们的日常开发中,关系型数据库和非关系型数据库的使用已经是一个成熟的软件产品开发过程中必不可却的存储数据的工具了.那么用了这么久的关系数据库和非关系型数据库你们都知道他们之间的区别了吗?下面 ...

  6. 关系型数据库与NOSQL

    本文转载自: http://www.cnblogs.com/chay1227/archive/2013/03/17/2964020.html(只作转载, 不代表本站和博主同意文中观点或证实文中信息) ...

  7. 关系型数据库与NOSQL(转)

    出处:http://www.cnblogs.com/chay1227/archive/2013/03/17/2964020.html 关系型数据库把所有的数据都通过行和列的二元表现形式表示出来. 关系 ...

  8. 关系型数据库和NOSQL数据库对比

    详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt328 关系型数据库,是建立在关系模型基础上的数据库,其借助于集合代数等数学概 ...

  9. 关系型数据库管理系统(RDBMS)与非关系型数据库(NoSQL)之间的区别

    简介 关系型数据库管理系统(RDBMS)是建立在关系模型基础上的数据库,主要代表有:Microsoft SQL Server,Oracle,MySQL(开源). 非关系型数据库(NoSQL),主要代表 ...

随机推荐

  1. framework not found -fno-arc编译错误

    由于我是刚接手的代码  然后我拿来运行根本就是运行不了的  然后需要在linker 那边删除点东西就可以了. 把下边的两个删除就可以了 关于other linker flags 的介绍 请参考http ...

  2. JAVA 环境变量

    Java是由Sun公司开发的一种应用于分布式网络环境的程序设计语言,Java语言拥有跨平台的特性,它编译的程序能够运行在多种操作系统平台上,可以实现“一次编写,到处运行”的强大功能. 工具/原料 JD ...

  3. 注解SpringMVC

    <!--注解映射器 --> <bean class="org.springframework.web.servlet.mvc.method.annotation.Reque ...

  4. SGU 133.Border

    水题不说了 #include <iostream> #include <cstring> #include <cstdio> #include <cmath& ...

  5. SGU 152.Making round

    不断向下取直到,忽略的数累计到一个百分比,给当前百分比加1. 这道题要避免处理浮点数,用余数来处理,不然会wa 9 #include <iostream> #include <cma ...

  6. javascript--”原路返回“

    css代码: <style type="text/css"> * { margin: 0px; padding: 0px; font-family: "mic ...

  7. 性能测试实践-linux

    需求:线上系统性能优化,查找服务器和线上系统瓶颈 根据线上经验数据及期望值定量 数据   up down 线上数据 50 500 测试数据 100 500~2000+ 测试数据 200 500~200 ...

  8. ios开发之通知事件

    每天学习一点点,总结一点点,成功从良好的习惯开始! 昨天学习了ios开发中的关于通知事件的一些东西,在这里简单总结下,仅供初学者学习,更多的是怕我自己忘了,咩哈哈~~~~ 通知(notificatio ...

  9. 在Linux下写一个线程池以及线程池的一些用法和注意点

    -->线程池介绍(大部分来自网络)  在这个部分,详细的介绍一下线程池的作用以及它的技术背景以及他提供的一些服务等.大部分内容来自我日常生活中在网络中学习到的一些概念性的东西. -->代码 ...

  10. 用C++进行函数式编程

    http://www.programmer.com.cn/12717/   文 / John Carmack 译 / 王江平 <Quake>作者Carmack认为追求函数式的程序设计有着实 ...