具体原理就不讲了qwq,毕竟证明我也不太懂

FFT(快速傅立叶变换)&NTT(快速数论变换)

FFT

 //求多项式乘积
//要求多项式A和多项式B的积多项式C
//具体操作就是
//DFT(A),DFT(B)->暴力乘积->拉格朗日插值(即IDFT(C))->C
//其中DFT表示离散傅里叶变换
//通俗的来说就是用点值表示多项式
//使用神秘单位复数根将时间复杂度降至O(nlogn)
//ps:但是常数巨大
//pps:应用非常广泛,非常多题目都要fft or ntt优化,板子一定要背熟
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define pw(n) (1<<n)
using namespace std;
const double pi=acos(-);
struct complex{
double a,b;
complex(double _a=,double _b=){
a=_a;
b=_b;
}
friend complex operator +(complex x,complex y){return complex(x.a+y.a,x.b+y.b);}
friend complex operator -(complex x,complex y){return complex(x.a-y.a,x.b-y.b);}
friend complex operator *(complex x,complex y){return complex(x.a*y.a-x.b*y.b,x.a*y.b+x.b*y.a);}
friend complex operator *(complex x,double y){return complex(x.a*y,x.b*y);}
friend complex operator /(complex x,double y){return complex(x.a/y,x.b/y);}
}a[],b[];
int n,m,bit,bitnum=,rev[pw()];
void getrev(int l){//Reverse
for(int i=;i<pw(l);i++){
rev[i]=(rev[i>>]>>)|((i&)<<(l-));
}
}
void FFT(complex *s,int op){
for(int i=;i<bit;i++)if(i<rev[i])swap(s[i],s[rev[i]]);
for(int i=;i<bit;i<<=){
complex w(cos(pi/i),op*sin(pi/i));
for(int p=i<<,j=;j<bit;j+=p){//Butterfly
complex wk(,);
for(int k=j;k<i+j;k++,wk=wk*w){
complex x=s[k],y=wk*s[k+i];
s[k]=x+y;
s[k+i]=x-y;
}
}
}
if(op==-){
for(int i=;i<=bit;i++){
s[i]=s[i]/(double)bit;
}
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%lf",&a[i].a);
for(int i=;i<=m;i++)scanf("%lf",&b[i].a);
m+=n;
for(bit=;bit<=m;bit<<=)bitnum++;
getrev(bitnum);
FFT(a,);
FFT(b,);
for(int i=;i<=bit;i++)a[i]=a[i]*b[i];
FFT(a,-);
for(int i=;i<=m;i++)printf("%d ",(int)(a[i].a+0.5));
return ;
}

NTT

 //费马数数论变换
//大家觉得998244353好还是1004535809好?^_^
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define pw(n) (1<<n)
using namespace std;
const int N=,P=,g=;//或P=1004535809
int n,m,bit,bitnum=,a[N+],b[N+],rev[N+];
void getrev(int l){
for(int i=;i<pw(l);i++){
rev[i]=(rev[i>>]>>)|((i&)<<(l-));
}
}
int fastpow(int a,int b){
int ans=;
for(;b;b>>=,a=1LL*a*a%P){
if(b&)ans=1LL*ans*a%P;
}
return ans;
}
void NTT(int *s,int op){
for(int i=;i<bit;i++)if(i<rev[i])swap(s[i],s[rev[i]]);
for(int i=;i<bit;i<<=){
int w=fastpow(g,(P-)/(i<<));
for(int p=i<<,j=;j<bit;j+=p){
int wk=;
for(int k=j;k<i+j;k++,wk=1LL*wk*w%P){
int x=s[k],y=1LL*s[k+i]*wk%P;
s[k]=(x+y)%P;
s[k+i]=(x-y+P)%P;
}
}
}
if(op==-){
reverse(s+,s+bit);
int inv=fastpow(bit,P-);
for(int i=;i<bit;i++)a[i]=1LL*a[i]*inv%P;
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
for(int i=;i<=m;i++)scanf("%d",&b[i]);
m+=n;
for(bit=;bit<=m;bit<<=)bitnum++;
getrev(bitnum);
NTT(a,);
NTT(b,);
for(int i=;i<bit;i++)a[i]=1LL*a[i]*b[i]%P;
NTT(a,-);
for(int i=m;i>=;i--)printf("%d ",a[i]);
return ;
}

FFT&NTT学习笔记的更多相关文章

  1. FFT/NTT 学习笔记

    0. 前置芝士 基础群论 复数 \(\mathbb C = \mathbb R[x^2+1]\) 则有 \(i^2+1=(-i)^2+1=0\),\(i \in \mathbb C - \mathbb ...

  2. FFT和NTT学习笔记_基础

    FFT和NTT学习笔记 算法导论 参考(贺) http://picks.logdown.com/posts/177631-fast-fourier-transform https://blog.csd ...

  3. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅲ

    第三波,走起~~ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ 单位根反演 今天打多校时 1002 被卡科技了 ...

  4. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ

    众所周知,tzc 在 2019 年(12 月 31 日)就第一次开始接触多项式相关算法,可到 2021 年(1 月 1 日)才开始写这篇 blog. 感觉自己开了个大坑( 多项式 多项式乘法 好吧这个 ...

  5. FFT、NTT学习笔记

    参考资料 picks miskcoo menci 胡小兔 unname 自为风月马前卒 上面是FFT的,学完了就来看NTT吧 原根 例题:luogu3803 fft优化后模板 #include < ...

  6. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ

    因为垃圾电脑太卡了就重开了一个... 前传:多项式Ⅰ u1s1 我预感还会有Ⅲ 多项式基础操作: 例题: 26. CF438E The Child and Binary Tree 感觉这题作为第一题还 ...

  7. 快速傅里叶变换(FFT)学习笔记(未完待续)

    目录 参考资料 FFT 吹水 例题 普通做法 更高大尚的做法 定义与一部分性质 系数表达式 点值表达式 点值相乘??? 卷积 复数 单位根 DFT IDFT 蝴蝶迭代优化 单位根求法 实现.细节与小优 ...

  8. NTT学习笔记

    和\(FFT\)相对应的,把单位根换成了原根,把共轭复数换成了原根的逆元,最后输出的时候记得乘以原\(N\)的逆元即可. #include <bits/stdc++.h> using na ...

  9. NTT 学习笔记

    引入 \(\tt NTT\) 和 \(\tt FFT\) 有什么不一样呢? 就是 \(\tt NTT\) 是可以用来取模的,而且没有复数带来的精度误差. 最最重要的是据说 \(\tt NTT\) 常数 ...

随机推荐

  1. jsonp模仿了得一个百度搜索框

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  2. Spring Boot 20170913

    SpringBoot 是做微服务的,比如只用来发邮件,只用来上载文件等等.优点是开发极其简单,约定大于俗成,缺点是不适合小型项目.通常用来分解大型项目,做成多个微服务. 参考: http://www. ...

  3. Kattis - mixedfractions

    Mixed Fractions You are part of a team developing software to help students learn basic mathematics. ...

  4. 速学JavaScript!

    什么是JavaScript? JavaScript是一种轻量级的脚本语言,也是一种嵌入式语言,是一种对象模型语言,简称JS:JavaScript的核心语法部分(语言本身)很精简,只包括两个部分: 基本 ...

  5. CF #487 (Div. 2) D. A Shade of Moonlight 构造_数形结合

    题意: 给 nnn个长度为 lll 且互不相交的开区间 (xi,xi+l)(x_{i}, x_{i}+l)(xi​,xi​+l) ,每个区间有一个移动速度 vvv,v∈1,−1v∈1,-1v∈1,−1 ...

  6. php 密码hash加密

    做密码加密,记录一下. password_hash 函数在 PHP 5.5 时被引入. 此函数现在使用的是目前 PHP 所支持的最强大的加密算法 BCrypt .例子: $passwordHash = ...

  7. [LUOGU]2016 Sam数

    我本来想看看SAM,就看见了这个.. 这道题很容易让人想到数位DP,用\(f[i][j]\)表示考虑到第\(i\)位,最后一位是\(j\)的方案数.看到1e18,直接矩阵快速幂加速,因为它每位转移都是 ...

  8. docker删除docker_gwbridge网桥

    最后更新时间:2018年12月26日 使用命令:docker network rm docker_gwbridge 提示无法删除. [root@localhost ~]# docker network ...

  9. Django -查询数据库相关操作

    一. 内置Admin 依赖APP: django.contrib.auth django.contrib.contenttypes django.contrib.messages django.con ...

  10. C语言实现面向对象(转)

    1.引言 面向对象编程(OOP)并不是一种特定的语言或者工具,它只是一种设计方法.设计思想. 它表现出来的三个最基本的特性就是封装.继承与多态. 很多面向对象的编程语言已经包含这三个特性了,例如 Sm ...