具体原理就不讲了qwq,毕竟证明我也不太懂

FFT(快速傅立叶变换)&NTT(快速数论变换)

FFT

 //求多项式乘积
//要求多项式A和多项式B的积多项式C
//具体操作就是
//DFT(A),DFT(B)->暴力乘积->拉格朗日插值(即IDFT(C))->C
//其中DFT表示离散傅里叶变换
//通俗的来说就是用点值表示多项式
//使用神秘单位复数根将时间复杂度降至O(nlogn)
//ps:但是常数巨大
//pps:应用非常广泛,非常多题目都要fft or ntt优化,板子一定要背熟
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define pw(n) (1<<n)
using namespace std;
const double pi=acos(-);
struct complex{
double a,b;
complex(double _a=,double _b=){
a=_a;
b=_b;
}
friend complex operator +(complex x,complex y){return complex(x.a+y.a,x.b+y.b);}
friend complex operator -(complex x,complex y){return complex(x.a-y.a,x.b-y.b);}
friend complex operator *(complex x,complex y){return complex(x.a*y.a-x.b*y.b,x.a*y.b+x.b*y.a);}
friend complex operator *(complex x,double y){return complex(x.a*y,x.b*y);}
friend complex operator /(complex x,double y){return complex(x.a/y,x.b/y);}
}a[],b[];
int n,m,bit,bitnum=,rev[pw()];
void getrev(int l){//Reverse
for(int i=;i<pw(l);i++){
rev[i]=(rev[i>>]>>)|((i&)<<(l-));
}
}
void FFT(complex *s,int op){
for(int i=;i<bit;i++)if(i<rev[i])swap(s[i],s[rev[i]]);
for(int i=;i<bit;i<<=){
complex w(cos(pi/i),op*sin(pi/i));
for(int p=i<<,j=;j<bit;j+=p){//Butterfly
complex wk(,);
for(int k=j;k<i+j;k++,wk=wk*w){
complex x=s[k],y=wk*s[k+i];
s[k]=x+y;
s[k+i]=x-y;
}
}
}
if(op==-){
for(int i=;i<=bit;i++){
s[i]=s[i]/(double)bit;
}
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%lf",&a[i].a);
for(int i=;i<=m;i++)scanf("%lf",&b[i].a);
m+=n;
for(bit=;bit<=m;bit<<=)bitnum++;
getrev(bitnum);
FFT(a,);
FFT(b,);
for(int i=;i<=bit;i++)a[i]=a[i]*b[i];
FFT(a,-);
for(int i=;i<=m;i++)printf("%d ",(int)(a[i].a+0.5));
return ;
}

NTT

 //费马数数论变换
//大家觉得998244353好还是1004535809好?^_^
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define pw(n) (1<<n)
using namespace std;
const int N=,P=,g=;//或P=1004535809
int n,m,bit,bitnum=,a[N+],b[N+],rev[N+];
void getrev(int l){
for(int i=;i<pw(l);i++){
rev[i]=(rev[i>>]>>)|((i&)<<(l-));
}
}
int fastpow(int a,int b){
int ans=;
for(;b;b>>=,a=1LL*a*a%P){
if(b&)ans=1LL*ans*a%P;
}
return ans;
}
void NTT(int *s,int op){
for(int i=;i<bit;i++)if(i<rev[i])swap(s[i],s[rev[i]]);
for(int i=;i<bit;i<<=){
int w=fastpow(g,(P-)/(i<<));
for(int p=i<<,j=;j<bit;j+=p){
int wk=;
for(int k=j;k<i+j;k++,wk=1LL*wk*w%P){
int x=s[k],y=1LL*s[k+i]*wk%P;
s[k]=(x+y)%P;
s[k+i]=(x-y+P)%P;
}
}
}
if(op==-){
reverse(s+,s+bit);
int inv=fastpow(bit,P-);
for(int i=;i<bit;i++)a[i]=1LL*a[i]*inv%P;
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
for(int i=;i<=m;i++)scanf("%d",&b[i]);
m+=n;
for(bit=;bit<=m;bit<<=)bitnum++;
getrev(bitnum);
NTT(a,);
NTT(b,);
for(int i=;i<bit;i++)a[i]=1LL*a[i]*b[i]%P;
NTT(a,-);
for(int i=m;i>=;i--)printf("%d ",a[i]);
return ;
}

FFT&NTT学习笔记的更多相关文章

  1. FFT/NTT 学习笔记

    0. 前置芝士 基础群论 复数 \(\mathbb C = \mathbb R[x^2+1]\) 则有 \(i^2+1=(-i)^2+1=0\),\(i \in \mathbb C - \mathbb ...

  2. FFT和NTT学习笔记_基础

    FFT和NTT学习笔记 算法导论 参考(贺) http://picks.logdown.com/posts/177631-fast-fourier-transform https://blog.csd ...

  3. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅲ

    第三波,走起~~ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ 单位根反演 今天打多校时 1002 被卡科技了 ...

  4. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ

    众所周知,tzc 在 2019 年(12 月 31 日)就第一次开始接触多项式相关算法,可到 2021 年(1 月 1 日)才开始写这篇 blog. 感觉自己开了个大坑( 多项式 多项式乘法 好吧这个 ...

  5. FFT、NTT学习笔记

    参考资料 picks miskcoo menci 胡小兔 unname 自为风月马前卒 上面是FFT的,学完了就来看NTT吧 原根 例题:luogu3803 fft优化后模板 #include < ...

  6. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ

    因为垃圾电脑太卡了就重开了一个... 前传:多项式Ⅰ u1s1 我预感还会有Ⅲ 多项式基础操作: 例题: 26. CF438E The Child and Binary Tree 感觉这题作为第一题还 ...

  7. 快速傅里叶变换(FFT)学习笔记(未完待续)

    目录 参考资料 FFT 吹水 例题 普通做法 更高大尚的做法 定义与一部分性质 系数表达式 点值表达式 点值相乘??? 卷积 复数 单位根 DFT IDFT 蝴蝶迭代优化 单位根求法 实现.细节与小优 ...

  8. NTT学习笔记

    和\(FFT\)相对应的,把单位根换成了原根,把共轭复数换成了原根的逆元,最后输出的时候记得乘以原\(N\)的逆元即可. #include <bits/stdc++.h> using na ...

  9. NTT 学习笔记

    引入 \(\tt NTT\) 和 \(\tt FFT\) 有什么不一样呢? 就是 \(\tt NTT\) 是可以用来取模的,而且没有复数带来的精度误差. 最最重要的是据说 \(\tt NTT\) 常数 ...

随机推荐

  1. selenium基础

    浏览器 selenium本质是通过驱动浏览器,完全模拟浏览器的操作,比如跳转.输入.点击.下拉等来拿到网页渲染之后的结果,可支持多种浏览器 官网链接:http://selenium-python.re ...

  2. luogu P4213 【模板】杜教筛(Sum)

    Code: #include <bits/stdc++.h> #include <tr1/unordered_map> using namespace std; using n ...

  3. 路飞学城Python-Day46

    16-如何正确的使用类选择器及总结 一般情况下尽量不要去使用id选择器,因为id选择器有很大的限制性,id一般都是JS配合使用的,类选择器都是和CSS配合使用的,特殊性情况可以用id选择器. 类的使用 ...

  4. node——post提交新闻内容

    获取用户post提交的数据分多次提交,因为post提交数据的时候,数据量可能比较大,会要影响服务器中获取用户所以.提交的所有数据,就必须监听request事件.那么,什么时候才表示浏览器把所有数据提交 ...

  5. 浅谈冒烟测试(Smoke Testing)

    鉴于之前跟开发提到提测前需要进行冒烟测试,然后几个开发一脸迷茫的问我:什么叫冒烟测试?所以我准备跟大家从以下几个方面简单的分享一下什么是冒烟测试. 一.软件测试的分类 二.冒烟测试(Smoke Tes ...

  6. linux软链接与硬链接详解

    软连接 命令: ln -s 原文件 目标文件 特征: 1.相当于windows的快捷方式 2.只是一个符号连接,所以软连接文件大小都很小 3.当运行软连接的时候,会根据连接指向找到真正的文件,然后执行 ...

  7. 归档 SCP SFTP RSYNC(数据同步)

    tar 选项  目标文件  源文件(1 2 3) tar cf **.tar file1 file2 file3 (默认情况下 cf选项只有归档没有压缩) tar xf 从归档中提取 创建tar的存档 ...

  8. selenium+xpath获取href的坑

    先上HTML文档 <html> <body> <a href="http://www.example.com">Example</a> ...

  9. 小学生都能学会的python(列表[ ])

    小学生都能学会的python(列表[ ]) 1. 什么是列表(list) 能装东西的东西 列表中装的数据是没有限制的, 大小基本上是够用的 列表使用[]来表示. 在列表中每个元素与元素之间用逗号隔开 ...

  10. DelayQueue延时队列示例

    介绍: DelayQueue是一个无界阻塞队列,只有在延迟期满时才能从中提取元素.该队列的头部是延迟期满后保存时间最长的Delayed 元素. 使用场景: 缓存系统的设计,缓存中的对象,超过了空闲时间 ...