题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1013

1013: [JSOI2008]球形空间产生器sphere

  有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球
面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器。

Input

  第一行是一个整数n(1<=N=10)。接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标。每一个实数精确到小数点
后6位,且其绝对值都不超过20000。

Output

  有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开。每个实数精确到小数点
后3位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。

Sample Input

2
0.0 0.0
-1.0 1.0
1.0 0.0

Sample Output

0.500 1.500
 
我们可以知道,一个球体上所有点到球心的距离相等,因此只需要求出一个点(x1,x2,x3,...,xn),使得:
                            Σnj=0(ai,j-xj)2=c
其中c是常数,该方程由n+1个n元二次方程构成,不是线性方程组。但我们可以通过相邻的两个方程作差,把它变成n个n元方程,同时消去常数c
于是我们可以得到下面这个阶梯矩阵
2(a1.1-a2.1)    2(a1,2-a2,2)    ...    2(a1,n-a2,n)        Σnj=1(a21,j-a2 2,j)
2(a2.1-a3.1)    2(a2,2-a3,2)    ...    2(a2,n-a3,n)        Σnj=1(a2 2,j-a23,j)
.
.
.
2(an.1-an+1,1) 2(an,2-an+1,2) ... 2(an,n-an+1,n)      Σnj=1(a2n,j-a2n+1,j)                        
高斯消元即可
#include<bits/stdc++.h>
using namespace std; const int maxn=+;
int n;
double a[maxn][maxn],c[maxn][maxn],b[maxn];
int main()
{
scanf("%d",&n);
for (int i=;i<=n+;i++)
for (int j=;j<=n;j++)
scanf("%lf",&a[i][j]);
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
{
c[i][j]=*(a[i][j]-a[i+][j]);
b[i]+=a[i][j]*a[i][j]-a[i+][j]*a[i+][j];
}
for (int i=;i<=n;i++)
{
for (int j=i;j<=n;j++)
if (fabs(c[j][i])>1e-){
for (int k=;k<=n;k++) swap(c[i][k],c[j][k]);
swap(b[i],b[j]);
}
for (int j=;j<=n;j++){
if (i==j) continue;
double rate=c[j][i]/c[i][i];
for (int k=i;k<=n;k++) c[j][k]-=rate*c[i][k];
b[j]-=rate*b[i];
}
}
for (int i=;i<=n;i++) printf("%.3f ",b[i]/c[i][i]);
return ;
}

               

 
 

BZOJ 球形空间产生器 解题报告(高斯消元)的更多相关文章

  1. bzoj 1013 [JSOI2008]球形空间产生器sphere(高斯消元)

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3584  Solved: 1863[Subm ...

  2. 【BZOJ 1013】球形空间产生器sphere(高斯消元)

    球形空间产生器sphere HYSBZ - 1013 (高斯消元) 原题地址 题意 给出n维的球上的n个点,问原球体球心. 提示 n维球体上两点距离公式\(dist = \sqrt{ (a1-b1)^ ...

  3. 【BZOJ】1013 [JSOI2008]球形空间产生器sphere(高斯消元)

    题目 传送门:QWQ 分析 高斯消元就是个大暴力.... 代码 #include <bits/stdc++.h> using namespace std; ; ; int n; doubl ...

  4. bzoj 1013: [JSOI2008]球形空间产生器sphere【高斯消元】

    n+1个坐标可以列出n个方程,以二维为例,设圆心为(x,y),给出三个点分别是(a1,b1),(a2,b2),(a3,b3) 因为圆上各点到圆心的距离相同,于是可以列出距离方程 \[ (a1-x)^2 ...

  5. 【BZOJ1013】【JSOI2008】球形空间产生器sphere(高斯消元)

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1600  Solved: 860[Submi ...

  6. BZOJ1013 [JSOI2008]球形空间产生器sphere(高斯消元)

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4846  Solved: 2525[Subm ...

  7. BZOJ1013 JSOI2008 球形空间产生器sphere 【高斯消元】

    BZOJ1013 JSOI2008 球形空间产生器sphere Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点 ...

  8. [luogu4035 JSOI2008] 球形空间产生器 (矩阵 高斯消元)

    传送门 题目描述 有一个球形空间产生器能够在 nnn 维空间中产生一个坚硬的球体.现在,你被困在了这个 nnn 维球体中,你只知道球面上 n+1n+1n+1 个点的坐标,你需要以最快的速度确定这个 n ...

  9. _bzoj1013 [JSOI2008]球形空间产生器sphere【高斯消元】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1013 保存高斯消元模版. ps,这一题的英文名字是ヨスガノソラ的开发商~^_^ #inclu ...

随机推荐

  1. Linux进程的内存布局

    这张图很好,注意其中最上面是高位地址,虽然很多个0,但是c开头的,不要看反了: 更具体的可以看这里: A.正文段.这是由cpu执行的机器指令部分.通常,正文段是可共享的,所以即使是经常执行的程序(如文 ...

  2. org.hibernate.AssertionFailure: null id in com.you.model.User entry (don&#39;t flush the Session after a

    1.错误描写叙述 org.hibernate.AssertionFailure: null id in com.you.model.User entry (don't flush the Sessio ...

  3. MongoDB(一)——简介

    这两天简单学习了一下MongoDB数据库,属于NoSQL类型数据库的一种,先简单宏观的看一下NoSQL的相关知识和MongoDB的基础知识. NoSQL是Not Only SQL的缩写,它指的是非关系 ...

  4. linux修改history记录数

    在linux系统下.history命令会保存多少条命令呢?曾在一本书上说,如果注销系统,那么会将所有的历史命令都定入到~/.bash_history, 但只保留1000条命令(这个是由默认的shell ...

  5. R学习小计

    安装R扩展包:install.packages("FKF")http://www.douban.com/note/243004605/1.输入数据 l读入有分隔符数据:A<- ...

  6. 你不知道的JavaScript(六)Box&Unbox

    很多语言中都有Box和Unbox的概念,很多书籍把Box翻译为"装箱操作",指的是將基本数据类型包装成对象:Unbox和它相反,把对象类型转换为基本类型. 我们知道JavaScri ...

  7. hiho1041 - 树,遍历

    题目链接 给一棵树,给一个序列,问能不能按这个序列遍历这棵树,满足每条边最多经过两次. -------------------------------------------------------- ...

  8. shell简单监控脚本模板

    #!/bin/bash host=127.0.0.1user=adminpassword='xx'port=6032x=0check_proxy(){v=$(mysql -N -u$user -p$p ...

  9. nginx的location 匹配的规则问题

    正则解释: ~ #匹配一个正则匹配,区分大小写~* #匹配一个正则,不区分大小写^~ #普通字符匹配,如果该选择匹配不匹配别的选项,一般用来匹配目录= #精确匹配 匹配案例:location = / ...

  10. 洛谷 P1967 货车运输 LCA + 最小生成树

    两点之间边权最大值的最小值一定在图的最小生成树中取到. 求出最小生成树,进行倍增即可. Code: #include<cstdio> #include<algorithm> u ...