[bzoj4766] 文艺计算姬 (矩阵树定理+二分图)
Description
"奋战三星期,造台计算机"。小W响应号召,花了三星期造了台文艺计算姬。文艺计算姬比普通计算机有更多的艺
术细胞。普通计算机能计算一个带标号完全图的生成树个数,而文艺计算姬能计算一个带标号完全二分图的生成树
个数。更具体地,给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图K_{n,m},计算姬能快
速算出其生成树个数。小W不知道计算姬算的对不对,你能帮助他吗?
Input
仅一行三个整数n,m,p,表示给出的完全二分图K_{n,m}
1 <= n,m,p <= 10^18
Output
仅一行一个整数,表示完全二分图K_{n,m}的生成树个数,答案需要模p。
Sample Input
2 3 7
Sample Output
5
Solution
答案为 \(n^{m-1}+m^{n-1}\)
这个可用矩阵树定理证出具体参考:
https://blog.csdn.net/WerKeyTom_FTD/article/details/60766200
Code
直接快速幂会爆long long
//By Menteur_Hxy
#include <vector>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
using namespace std;
typedef long long LL;
LL read() {
LL x=0,f=1; char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
return x*f;
}
LL n,m,MOD;
LL mul(LL a,LL b) {
LL t=0; if(a<b) swap(a,b);
while(b) {
if(b&1) t=(t+a)%MOD;
a=(a+a)%MOD; b>>=1;
}
return t;
}
LL qpow(LL a,LL b) {
LL t=1; a%=MOD;
while(b) {
if(b&1) t=mul(t,a);
a=mul(a,a); b>>=1;
}
return t;
}
int main() {
n=read(),m=read(),MOD=read();
printf("%lld",mul(qpow(n,m-1),qpow(m,n-1))%MOD);
return 0;
}
[bzoj4766] 文艺计算姬 (矩阵树定理+二分图)的更多相关文章
- BZOJ4766:文艺计算姬(矩阵树定理)
Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺术细胞. 普通计算机能计算一个带标号完全图的生成树个数 ...
- BZOJ 4766: 文艺计算姬 [矩阵树定理 快速乘]
传送门 题意: 给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图$K_{n,m}$ 求生成树个数 1 <= n,m,p <= 10^18 显然不能暴力上矩阵树定理 看 ...
- bzoj 4766: 文艺计算姬 矩阵树定理
题目: 给定一个一边点数为\(n\),另一边点数为\(m\),共有\(n*m\)条边的带标号完全二分图\(K_{n,m}\) 计算其生成树个数 \(n,m,p \leq 10^{18} ,p为模数\) ...
- bzoj4766 文艺计算姬
Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺术细胞.普通计算机能计算一个带标号完全图的生成树个数, ...
- BZOJ4766: 文艺计算姬(Prufer序列)
题面 传送门 题解 结,结论题? 答案就是\(n^{m-1}m^{n-1}\) 我们考虑它的\(Prufer\)序列,最后剩下的两个点肯定是一个在左边一个在右边,设左边\(n\)个点,右边\(m\)个 ...
- Bzoj4766: 文艺计算姬(Matrix-tree/prufer)
BZOJ 答案就是 \(n^{m-1}m^{n-1}\) \(prufer\) 证明: \(n\) 中的数字出现 \(m-1\) 次,\(m\) 中出现 \(n-1\) 次,根据 \(prufer\) ...
- [bzoj4766]文艺计算姬——完全二分图生成树个数
Brief Description 求\(K_{n,m}\) Algorithm Design 首先我们有(Matrix Tree)定理,可以暴力生成几组答案,发现一些规律: \[K_{n,m} = ...
- 【BZOJ】4766: 文艺计算姬
[题目]给定两边节点数为n和m的完全二分图,求生成树数取模给定的p.n,m,p<=10^18. [算法]生成树计数(矩阵树定理) [题解]参考自 [bzoj4766]文艺计算姬 by WerKe ...
- 图论&数学:矩阵树定理
运用矩阵树定理进行生成树计数 给定一个n个点m条边的无向图,问生成树有多少种可能 直接套用矩阵树定理计算即可 矩阵树定理的描述如下: 首先读入无向图的邻接矩阵,u-v G[u][v]++ G[v][u ...
随机推荐
- [RxJS 6] The Catch and Rethrow RxJs Error Handling Strategy and the finalize Operator
Sometime we want to set a default or fallback value when network request failed. http$ .pipe( map(re ...
- C语言之文件操作07——读取文件数据并计算均值方差标准差
//文件 /* =============================================================== 题目:从文本文件"high.txt" ...
- javascript正則表達式
定义一个正則表達式 能够用字面量 var regex = /xyz/; var regex = /xyz/i; 也能够用构造函数 var regex = new RegExp('xyz'); var ...
- STL_算法_填充新值(fill、fill_n、generate、generate_n)
C++ Primer 学习中... 简单记录下我的学习过程 (代码为主) 全部容器适用 fill(b,e,v) //[b,e) 填充成v fill_n(b,n,v) ...
- JavaScript模式读书笔记 第4章 函数
2014年11月10日 1.JavaScript函数具有两个特点: 函数是第一类对象 函数能够提供作用域 函数即对象,表现为: -1,函数能够在执行时动态创建,也 ...
- luogu1991 无线通讯网
题目大意 国防部计划用无线网络连接若干个边防哨所.2 种不同的通讯技术用来搭建无线网络:每个边防哨所都要配备无线电收发器:有一些哨所还可以增配卫星电话.任意两个配备了一条卫星电话线路的哨所(两边都ᤕ有 ...
- android SearchView 样式修改
try { Class<?> argClass=mSearchView.getClass(); //指定某个私有属性 Field mSearchHintIconField = argCla ...
- 摄像头ov2685中关于sensor id 设置的相关的寄存器地址【转】
本文转载自:http://blog.csdn.net/morixinguan/article/details/51220992 OV2685 : CHIP_ID address : 0x300A ...
- golomb哥伦布编码——本质上就是通过0来区分商和余数
哥伦布编码是一个针对整数的变长编码方式,详细介绍可以看维基百科.这里简单介绍下: 哥伦布编码使用指定的整数 M 把输入的整数分成两部分:商数 q.余数 r. 商数当做一元编码,而余数放在后面做为可缩短 ...
- Alignment(dp)
http://poj.org/problem?id=1836 求两遍最长上升子序列,顺序求一遍,逆序求一遍. #include <stdio.h> #include <string. ...