传送门

Description

"奋战三星期,造台计算机"。小W响应号召,花了三星期造了台文艺计算姬。文艺计算姬比普通计算机有更多的艺

术细胞。普通计算机能计算一个带标号完全图的生成树个数,而文艺计算姬能计算一个带标号完全二分图的生成树

个数。更具体地,给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图K_{n,m},计算姬能快

速算出其生成树个数。小W不知道计算姬算的对不对,你能帮助他吗?

Input

仅一行三个整数n,m,p,表示给出的完全二分图K_{n,m}

1 <= n,m,p <= 10^18

Output

仅一行一个整数,表示完全二分图K_{n,m}的生成树个数,答案需要模p。

Sample Input

2 3 7

Sample Output

5

Solution

答案为 \(n^{m-1}+m^{n-1}\)

这个可用矩阵树定理证出具体参考:

https://blog.csdn.net/WerKeyTom_FTD/article/details/60766200

Code

直接快速幂会爆long long

//By Menteur_Hxy
#include <vector>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
using namespace std;
typedef long long LL; LL read() {
LL x=0,f=1; char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
return x*f;
} LL n,m,MOD; LL mul(LL a,LL b) {
LL t=0; if(a<b) swap(a,b);
while(b) {
if(b&1) t=(t+a)%MOD;
a=(a+a)%MOD; b>>=1;
}
return t;
} LL qpow(LL a,LL b) {
LL t=1; a%=MOD;
while(b) {
if(b&1) t=mul(t,a);
a=mul(a,a); b>>=1;
}
return t;
} int main() {
n=read(),m=read(),MOD=read();
printf("%lld",mul(qpow(n,m-1),qpow(m,n-1))%MOD);
return 0;
}

[bzoj4766] 文艺计算姬 (矩阵树定理+二分图)的更多相关文章

  1. BZOJ4766:文艺计算姬(矩阵树定理)

    Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺术细胞. 普通计算机能计算一个带标号完全图的生成树个数 ...

  2. BZOJ 4766: 文艺计算姬 [矩阵树定理 快速乘]

    传送门 题意: 给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图$K_{n,m}$ 求生成树个数 1 <= n,m,p <= 10^18 显然不能暴力上矩阵树定理 看 ...

  3. bzoj 4766: 文艺计算姬 矩阵树定理

    题目: 给定一个一边点数为\(n\),另一边点数为\(m\),共有\(n*m\)条边的带标号完全二分图\(K_{n,m}\) 计算其生成树个数 \(n,m,p \leq 10^{18} ,p为模数\) ...

  4. bzoj4766 文艺计算姬

    Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺术细胞.普通计算机能计算一个带标号完全图的生成树个数, ...

  5. BZOJ4766: 文艺计算姬(Prufer序列)

    题面 传送门 题解 结,结论题? 答案就是\(n^{m-1}m^{n-1}\) 我们考虑它的\(Prufer\)序列,最后剩下的两个点肯定是一个在左边一个在右边,设左边\(n\)个点,右边\(m\)个 ...

  6. Bzoj4766: 文艺计算姬(Matrix-tree/prufer)

    BZOJ 答案就是 \(n^{m-1}m^{n-1}\) \(prufer\) 证明: \(n\) 中的数字出现 \(m-1\) 次,\(m\) 中出现 \(n-1\) 次,根据 \(prufer\) ...

  7. [bzoj4766]文艺计算姬——完全二分图生成树个数

    Brief Description 求\(K_{n,m}\) Algorithm Design 首先我们有(Matrix Tree)定理,可以暴力生成几组答案,发现一些规律: \[K_{n,m} = ...

  8. 【BZOJ】4766: 文艺计算姬

    [题目]给定两边节点数为n和m的完全二分图,求生成树数取模给定的p.n,m,p<=10^18. [算法]生成树计数(矩阵树定理) [题解]参考自 [bzoj4766]文艺计算姬 by WerKe ...

  9. 图论&数学:矩阵树定理

    运用矩阵树定理进行生成树计数 给定一个n个点m条边的无向图,问生成树有多少种可能 直接套用矩阵树定理计算即可 矩阵树定理的描述如下: 首先读入无向图的邻接矩阵,u-v G[u][v]++ G[v][u ...

随机推荐

  1. MySql免安装版l配置方法

    初次接触mysql,折腾了一天,总是安装不成功,服务启动不了.后来从官网下载了ZIP Archive版,不用安装,直接把它解压到磁盘,做一些简单的配置就可以. 软件下载地址:http://dev.my ...

  2. #定位系统性能瓶颈# sysdig

    安装方法: curl -s https://s3.amazonaws.com/download.draios.com/stable/install-sysdig | sudo bash [root@l ...

  3. luogu3834 【模板】可持久化线段树1(主席树)

    关键字:线段树 可持久化 线段树:当版本(即对应的原序列的区间[1,r])一定时,每个节点的left,right下标为值域,值为其对应的原序列区间[1,r]中元素大小在值域中的元素个数. 可持久化:新 ...

  4. C++_homework_EraseComment

    顾名思义就是删除程序中的注释,不清楚fsm的机制,完全是自己的思路做. 开头先读取一个字符确定是否到文件结尾,如果读取成功,是换行的话就换行,并继续读取,不是的话,用putback放回缓冲区,并整行读 ...

  5. 原生JS---7

    原生js学习笔记7——本地存储之cookie操作 什么是cookie • 用来保存页面信息的,如用户名.密码 • cookie的特性:同一个网站中所有的页面共享一套cookie:数量.大小限制:过期时 ...

  6. invoke与call

    “调用一个委托实例” 中的 “调用” 对应的是invoke,理解为 “唤出” 更恰当.它和后面的 “在一个对象上调用方法” 中的 “调用” 稍有不同,后则对应的是call.在英语的语境中,invoke ...

  7. spring事务回滚问题

    刚刚接到一个上家公司同事的一个电话,问我为什么service方法事务不会滚了,日志打印了,调用webservice报错. 我让他把这个调用执行webservice的方法截图发给我,如下:   publ ...

  8. 【转载】【翻译】JavaScript Scoping and Hoisting--JS作用域和变量提升的探讨

    原文链接:http://www.adequatelygood.com/2010/2/JavaScript-Scoping-and-Hoisting 你知道下面的JavaScript代码执行后会aler ...

  9. bcg库使用心得两则

    作者:朱金灿 来源:http://blog.csdn.net/clever101 最近帮同事解决了两个BCG库的使用问题,特记录下来. 一是在outlook风格停靠栏上创建对话框的做法.代码如下: C ...

  10. Java关于反射的用法

    一. 首先是准备一个需要反射的类 public class Person { private String name; private int age; public String sex; publ ...