给出长度为N的数组,找出这个数组的最长递增子序列。(递增子序列是指,子序列的元素是递增的)

例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10。

Input

第1行:1个数N,N为序列的长度(2 <= N <= 50000) 

第2 - N + 1行:每行1个数,对应序列的元素(-10^9 <= Sii <= 10^9)

Output

输出最长递增子序列的长度。

Sample Input

8
5
1
6
8
2
4
5
10

Sample Output

5

思路:显而易见,这道题要用动态规划和二分来写,复杂度O(nlogn),n2会超时。

#include<iostream>
#include<cstdio>
using namespace std;
int arr[50005];
int BinarySearch(int *arr,int value,int len)
{
int begin =0,end=len-1;
while(begin<=end)
{
int mid=begin+(end-begin)/2 ;
if(arr[mid]==value)
return mid;
else if(arr[mid]>value)
end=mid-1;
else
begin=mid+1;
}
return begin;
} int LIS(int *arr,int len)
{
int a[len],n=1;
a[0]=arr[0];
for(int i=1;i<len;++i)
{
if(arr[i] > a[n-1])
{
a[n]=arr[i];
++n;
}
else
{
int pos = BinarySearch(a,arr[i],n);
a[pos]=arr[i];
}
}
return n;
} int main()
{
int n;
scanf("%d",&n);
for(int i=0;i<n;++i)
scanf("%d",&arr[i]);
printf("%d\n",LIS(arr,n));
return 0;
}

51Nod - 1134 最长递增子序列【动态规划】的更多相关文章

  1. 51nod 1134 最长递增子序列

    题目链接:51nod 1134 最长递增子序列 #include<cstdio> #include<cstring> #include<algorithm> usi ...

  2. 51nod 1134最长递增子序列

    1134 最长递增子序列 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素 ...

  3. LCS 51Nod 1134 最长递增子序列

    给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10.   Input 第1行:1个 ...

  4. LIS 51Nod 1134 最长递增子序列

    给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10.   Input 第1行:1个 ...

  5. 51Nod 1134 最长递增子序列(动态规划O(nlogn))

    #include <iostream> #include <algorithm> #include <stdio.h> #define MAXN 50010 usi ...

  6. 51Nod:1134 最长递增子序列

    动态规划 修改隐藏话题 1134 最长递增子序列  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递 ...

  7. 51 Nod 1134 最长递增子序列 (动态规划基础)

    原题链接:1134 最长递增子序列 题目分析:长度为  的数列  有多达  个子序列,但我们应用动态规划法仍可以很高效地求出最长递增子序列().这里介绍两种方法. 先考虑用下列变量设计动态规划的算法. ...

  8. 51nod 1376 最长递增子序列的数量(线段树)

    51nod 1376 最长递增子序列的数量 数组A包含N个整数(可能包含相同的值).设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递 ...

  9. 51nod 1218 最长递增子序列 | 思维题

    51nod 1218 最长递增子序列 题面 给出一个序列,求哪些元素可能在某条最长上升子序列中,哪些元素一定在所有最长上升子序列中. 题解 YJY大嫂教导我们,如果以一个元素结尾的LIS长度 + 以它 ...

随机推荐

  1. leetcode 二分法 Pow(x, n)

    Pow(x, n) Total Accepted: 25273 Total Submissions: 97470My Submissions Implement pow(x, n). 题意:求x的n次 ...

  2. Project Euler:Problem 33 Digit cancelling fractions

    The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplif ...

  3. Android中Calendar类的用法总结

    Calendar是Android开发中需要获取时间时必不可少的一个工具类,通过这个类可以获得的时间信息还是很丰富的,下面做一个总结,以后使用的时候就不用总是去翻书或者查资料了. 在获取时间之前要先获得 ...

  4. Android内存解析(一)—从Linux系统内存逐步认识Android应用内存

    总述 Android应用程序被限制了内存使用上限,一般为16M或24M(具体看系统设置),当应用的使用内存超过这个上限时,就会被系统认为内存泄漏,被kill掉.所以在android开发时,管理好内存的 ...

  5. KNN in c++

    Pseudo Code of KNN We can implement a KNN model by following the below steps: Load the data Initiali ...

  6. jFinal基于maven简单的demo

    JFinal 是基于Java 语言的极速 web 开发框架,其核心设计目标是开发迅速.代码量少.学习简单.功能强大.轻量级.易扩展.Restful.在拥有Java语言所有优势的同时再拥有ruby.py ...

  7. C++中const用法

    1.const和指针: 如果const出现在星号左边,表示被指物是常量:如果出现在星号右边,表示指针自身是常量:如果出现在星号两边,表示被指物和指针两者都是常量. char greet[] = “He ...

  8. iOS网络——NSURLCache设置网络请求缓存

    今天在看HTTP协议,看到了response头中的cache-control,于是就深入的研究了一下.发现了iOS中一个一直被我忽略的类——NSURLCache类. NSURLCache NSURLC ...

  9. iOS多线程——GCD篇

    什么是GCD GCD是苹果对多线程编程做的一套新的抽象基于C语言层的API,结合Block简化了多线程的操作,使得我们对线程操作能够更加的安全高效. 在GCD出现之前Cocoa框架提供了NSObjec ...

  10. Laravel5.1学习笔记9 系统架构1 请求生命周期 (待修)

    Request Lifecycle Introduction Lifecycle Overview Focus On Service Providers Introduction When using ...