51Nod - 1134 最长递增子序列【动态规划】
给出长度为N的数组,找出这个数组的最长递增子序列。(递增子序列是指,子序列的元素是递增的)
例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10。
Input
第1行:1个数N,N为序列的长度(2 <= N <= 50000)
第2 - N + 1行:每行1个数,对应序列的元素(-10^9 <= Sii <= 10^9)
Output
输出最长递增子序列的长度。
Sample Input
8
5
1
6
8
2
4
5
10
Sample Output
5
思路:显而易见,这道题要用动态规划和二分来写,复杂度O(nlogn),n2会超时。
#include<iostream>
#include<cstdio>
using namespace std;
int arr[50005];
int BinarySearch(int *arr,int value,int len)
{
int begin =0,end=len-1;
while(begin<=end)
{
int mid=begin+(end-begin)/2 ;
if(arr[mid]==value)
return mid;
else if(arr[mid]>value)
end=mid-1;
else
begin=mid+1;
}
return begin;
}
int LIS(int *arr,int len)
{
int a[len],n=1;
a[0]=arr[0];
for(int i=1;i<len;++i)
{
if(arr[i] > a[n-1])
{
a[n]=arr[i];
++n;
}
else
{
int pos = BinarySearch(a,arr[i],n);
a[pos]=arr[i];
}
}
return n;
}
int main()
{
int n;
scanf("%d",&n);
for(int i=0;i<n;++i)
scanf("%d",&arr[i]);
printf("%d\n",LIS(arr,n));
return 0;
}
51Nod - 1134 最长递增子序列【动态规划】的更多相关文章
- 51nod 1134 最长递增子序列
题目链接:51nod 1134 最长递增子序列 #include<cstdio> #include<cstring> #include<algorithm> usi ...
- 51nod 1134最长递增子序列
1134 最长递增子序列 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素 ...
- LCS 51Nod 1134 最长递增子序列
给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10. Input 第1行:1个 ...
- LIS 51Nod 1134 最长递增子序列
给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10. Input 第1行:1个 ...
- 51Nod 1134 最长递增子序列(动态规划O(nlogn))
#include <iostream> #include <algorithm> #include <stdio.h> #define MAXN 50010 usi ...
- 51Nod:1134 最长递增子序列
动态规划 修改隐藏话题 1134 最长递增子序列 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递 ...
- 51 Nod 1134 最长递增子序列 (动态规划基础)
原题链接:1134 最长递增子序列 题目分析:长度为 的数列 有多达 个子序列,但我们应用动态规划法仍可以很高效地求出最长递增子序列().这里介绍两种方法. 先考虑用下列变量设计动态规划的算法. ...
- 51nod 1376 最长递增子序列的数量(线段树)
51nod 1376 最长递增子序列的数量 数组A包含N个整数(可能包含相同的值).设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递 ...
- 51nod 1218 最长递增子序列 | 思维题
51nod 1218 最长递增子序列 题面 给出一个序列,求哪些元素可能在某条最长上升子序列中,哪些元素一定在所有最长上升子序列中. 题解 YJY大嫂教导我们,如果以一个元素结尾的LIS长度 + 以它 ...
随机推荐
- leetcode 二分法 Pow(x, n)
Pow(x, n) Total Accepted: 25273 Total Submissions: 97470My Submissions Implement pow(x, n). 题意:求x的n次 ...
- Project Euler:Problem 33 Digit cancelling fractions
The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplif ...
- Android中Calendar类的用法总结
Calendar是Android开发中需要获取时间时必不可少的一个工具类,通过这个类可以获得的时间信息还是很丰富的,下面做一个总结,以后使用的时候就不用总是去翻书或者查资料了. 在获取时间之前要先获得 ...
- Android内存解析(一)—从Linux系统内存逐步认识Android应用内存
总述 Android应用程序被限制了内存使用上限,一般为16M或24M(具体看系统设置),当应用的使用内存超过这个上限时,就会被系统认为内存泄漏,被kill掉.所以在android开发时,管理好内存的 ...
- KNN in c++
Pseudo Code of KNN We can implement a KNN model by following the below steps: Load the data Initiali ...
- jFinal基于maven简单的demo
JFinal 是基于Java 语言的极速 web 开发框架,其核心设计目标是开发迅速.代码量少.学习简单.功能强大.轻量级.易扩展.Restful.在拥有Java语言所有优势的同时再拥有ruby.py ...
- C++中const用法
1.const和指针: 如果const出现在星号左边,表示被指物是常量:如果出现在星号右边,表示指针自身是常量:如果出现在星号两边,表示被指物和指针两者都是常量. char greet[] = “He ...
- iOS网络——NSURLCache设置网络请求缓存
今天在看HTTP协议,看到了response头中的cache-control,于是就深入的研究了一下.发现了iOS中一个一直被我忽略的类——NSURLCache类. NSURLCache NSURLC ...
- iOS多线程——GCD篇
什么是GCD GCD是苹果对多线程编程做的一套新的抽象基于C语言层的API,结合Block简化了多线程的操作,使得我们对线程操作能够更加的安全高效. 在GCD出现之前Cocoa框架提供了NSObjec ...
- Laravel5.1学习笔记9 系统架构1 请求生命周期 (待修)
Request Lifecycle Introduction Lifecycle Overview Focus On Service Providers Introduction When using ...