题目描述

输入

输出

样例输入

7 5
0 2 1 0 1 3 2
1 3
2 3
1 4
3 6
2 7

提示


这个题说来也挺有意思的

当时集训的时候遇到了一道类似的题,但是题意与此不同,我太菜了,理解成了这个题233结果爆零(蒟蒻咆哮:“唉我AC呢!?”)

所以就把以前写的码翻了出来,交了上去,果然A了2333

当时的写法是这样的:

首先处理出每个数下一次出现的位置,这样每个数字就处理成了 这段区间内这个数没有出现过,数量是O(n)级别的

那么一个询问区间的答案就是所有套在它外面的不出现区间的最小值

具体实现就是首先离线,将“询问区间”和“不出现区间”在一起按照左端点排序,如果相同则优先处理“不出现区间”

此时维护一个线段树,位置表示的是区间的右端点,这个位置上存的是:l小于等于当前扫到的L,且以这个位置为r的区间中数最小的是啥

那么如果扫到了一个提问,那么答案就是(R,N)这个区间内最小值

当时写码的时候有点蒙圈,实际上好像写个单点修改就好了?

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define maxn 200005
#define inf n+1
using namespace std;
int a[maxn],nxt[maxn],top;
int n,m,s[maxn*],tag[maxn*];
struct line{
int l,r,x,o;
}q[maxn*];
bool cmp(line A,line B){if(A.l!=B.l)return A.l<B.l;else return A.o<B.o;}
int ans[maxn];
void build(int x,int l,int r){
s[x]=tag[x]=inf;
if(l==r)return;
int mid=(l+r)/;
build(x+x,l,mid);
build(x+x+,mid+,r);
}
void pushdown(int x,int l,int r){
if(l==r){
tag[x]=inf;
return;
}
s[x+x]=min(s[x+x],tag[x]);
tag[x+x]=min(tag[x+x],tag[x]);
s[x+x+]=min(s[x+x+],tag[x]);
tag[x+x+]=min(tag[x+x+],tag[x]);
tag[x]=inf;
return;
}
void add(int x,int l,int r,int L,int R,int k){
if(l==L&&r==R){
s[x]=min(s[x],k);
tag[x]=min(tag[x],k);
return;
}
pushdown(x,l,r);
int mid=(l+r)/;
if(R<=mid)add(x+x,l,mid,L,R,k);
else if(L>mid)add(x+x+,mid+,r,L,R,k);
else add(x+x,l,mid,L,mid,k),add(x+x+,mid+,r,mid+,R,k);
s[x]=min(s[x+x],s[x+x+]);
}
int query(int x,int l,int r,int L,int R){
if(l==L&&r==R)return s[x];
pushdown(x,l,r);
int mid=(l+r)/;
if(R<=mid)return query(x+x,l,mid,L,R);
else if(L>mid)return query(x+x+,mid+,r,L,R);
else return min(query(x+x,l,mid,L,mid),query(x+x+,mid+,r,mid+,R));
}
int main(){
scanf("%d%d",&n,&m);
build(,,n);
nxt[]=n+;
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
nxt[i]=n+;
}
nxt[n+]=n+;
for(int i=n;i>=;i--){
if(nxt[a[i]]-i->){
q[++top].o=;
q[top].l=i+;
q[top].r=nxt[a[i]]-;
q[top].x=a[i];
}
nxt[a[i]]=i;
}
for(int i=;i<=n+;i++)
if(nxt[i]->){
q[++top].o=;
q[top].l=;
q[top].r=nxt[i]-;
q[top].x=i;
}
for(int i=,l,r;i<=m;i++){
scanf("%d%d",&l,&r);
q[++top].o=;
q[top].l=l;
q[top].r=r;
q[top].x=i;
}
sort(q+,q++top,cmp);
for(int i=;i<=top;i++){
if(q[i].o==)
add(,,n,q[i].r,q[i].r,q[i].x);
else{
int A=query(,,n,q[i].r,n);
ans[q[i].x]=A;
}
}
for(int i=;i<=m;i++)printf("%d\n",ans[i]);
return ;
}

不过这个题还有在线的主席树做法

我们维护一个线段树,以数值为位置,里面存的是目前为止这个数最近一次出现的位置

那么询问一个区间l r,就找r之前都加入了的线段树,找里面出现位置小于l且最小的数

这个可以通过在线段树上跳跃实现,具体看代码吧

这是我写(抄)的第一个主席树,感觉还是不太明了的样子。。。இ௰இ

 #include<cstdio>
#include<algorithm>
#define maxn 200005
using namespace std;
int n,m,cnt;
int rt[maxn],a[maxn],b[maxn];
struct tree{
int l,r,Min;
}t[*maxn];
int insert(int K,int X,int I,int l,int r){
t[++cnt]=t[K];
K=cnt;
if(l==r){
t[K].l=t[K].r=;
t[K].Min=I;
return cnt;
}
int mid=(l+r)>>;
if(X<=mid)
t[K].l=insert(t[K].l,X,I,l,mid);
else
t[K].r=insert(t[K].r,X,I,mid+,r);
t[K].Min=min(t[t[K].l].Min,t[t[K].r].Min);
return K;
}
int query(int k,int X,int l,int r){
if(l==r)return l;
int mid=(l+r)>>;
if(t[t[k].l].Min<X)
return query(t[k].l,X,l,mid);
else return query(t[k].r,X,mid+,r);
}
int main(){
scanf("%d%d",&n,&m);
rt[]=;
t[]=(tree){,,};
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
if(a[i]<=n)
rt[i]=insert(rt[i-],a[i],i,,n);
else rt[i]=rt[i-];
}
for(int i=,l,r;i<=m;i++){
scanf("%d%d",&l,&r);
printf("%d\n",query(rt[r],l,,n));
}
return ;
}

「BZOJ3339」Rmq Problem(5366)的更多相关文章

  1. 【bzoj3339】Rmq Problem

    [bzoj3339]Rmq Problem   Description Input Output Sample Input 7 50 2 1 0 1 3 21 32 31 43 62 7 Sample ...

  2. BZOJ3339&&3585 Rmq Problem&&mex

    BZOJ3339&&3585:Rmq Problem&&mex Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最 ...

  3. BZOJ3339:Rmq Problem & BZOJ3585 & 洛谷4137:mex——题解

    前者:https://www.lydsy.com/JudgeOnline/problem.php?id=3339 后者: https://www.lydsy.com/JudgeOnline/probl ...

  4. BZOJ3339 Rmq Problem

    [bzoj3339]Rmq Problem Description Input Output Sample Input 7 5 0 2 1 0 1 3 2 1 3 2 3 1 4 3 6 2 7 Sa ...

  5. 分块+莫队||BZOJ3339||BZOJ3585||Luogu4137||Rmq Problem / mex

    题面:P4137 Rmq Problem / mex 题解:先莫队排序一波,然后对权值进行分块,找出第一个没有填满的块,直接for一遍找答案. 除了bzoj3339以外,另外两道题Ai范围都是1e9. ...

  6. [bzoj3339]Rmq Problem||[bzoj3585]mex_线段树

    Rmq Problem bzoj-3339||mex bzoj-3585 题目大意:给定一个长度为n的数列a,多次讯问区间l,r中最小的不属于集合{$A_l,A_{l+1}...A_r$}的非负整数. ...

  7. 「HAOI2011」Problem c

    「HAOI2011」Problem c 传送门 由于这道题本人讲得不好,可以参考这位dalao的博客 我可就直接上代码了... 参考代码: /*---------------------------- ...

  8. loj#2483. 「CEOI2017」Building Bridges 斜率优化 cdq分治

    loj#2483. 「CEOI2017」Building Bridges 链接 https://loj.ac/problem/2483 思路 \[f[i]=f[j]+(h[i]-h[j])^2+(su ...

  9. loj2353. 「NOI2007」 货币兑换

    loj2353. 「NOI2007」 货币兑换 链接 https://loj.ac/problem/2353 思路 题目不重要,重要的是最后一句话 提示 输入文件可能很大,请采用快速的读入方式. 必然 ...

随机推荐

  1. mac Gitblit安装

    jdk下载传送门 gitBlit是java编写的的 第一步 需要安装java jdk 传送门 JDK6的下载地址: http://www.oracle.com/technetwork/java/jav ...

  2. 数据结构----队列:顺序队列&顺序循环队列、链式队列、顺序优先队列

    一.队列的概念: 队列(简称作队,Queue)也是一种特殊的线性表,队列的数据元素以及数据元素间的逻辑关系和线性表完全相同,其差别是线性表允许在任意位置插入和删除,而队列只允许在其一端进行插入操作在其 ...

  3. Go在Ubuntu 14.04 64位上的安装过程

    1. 从 https://golang.org/dl/  或  https://studygolang.com/dl 下载最新的发布版本go1.10即go1.10.linux-amd64.tar.gz ...

  4. Codeforces Round #FF (Div. 2) D. DZY Loves Modification 贪心+优先队列

    链接:http://codeforces.com/problemset/problem/447/D 题意:一个n*m的矩阵.能够进行k次操作,每次操作室对某一行或某一列的的数都减p,获得的得分是这一行 ...

  5. Mac下搭建hexo3.0博客

    Mac下搭建hexo3.0博客(文章同步自个人博客站点以及Github博客https://xingstarx.github.io/) window环境下搭建hexo博客 详细内容能够參考这一篇文章怎样 ...

  6. 数据库技术_Orcale技术(0002)_5分钟会用存储过程_存储过程实例

    基础技术: 样例业务功能: 1.依据传入的类型A_TYPE联合查询PROCEDURE_TEST_A表.PROCEDURE_TEST_A_SUB表中的数据.并显示主要内容. 2.依据传入的类型A_TYP ...

  7. java javax.annotation.Resource注解的详解

    转自:https://www.jb51.net/article/95456.htm java 注解:java javax.annotation.Resource  当我们在xml里面为类配置注入对象时 ...

  8. php模版静态化技术

    PHP页面的静态化很有必要,尤其是在CMS系统中,一些内容一旦生成,基本上不会有变化,这时如果用html将页面静态化,无疑会减少服务其解析PHP页面的负担.以下是看书学来的PHP静态化技术,记录之以备 ...

  9. Python基本数据类型之数字int

    数字 int(x, base=None) 将x转换为一个整数.base为按照多少进制进行转换 float(x) 将x转换到一个浮点数. complex(x) 将x转换到一个复数,实数部分为 x,虚数部 ...

  10. 学习java的方式