线段树合并(【POI2011】ROT-Tree Rotations)

题意

现在有一棵二叉树,所有非叶子节点都有两个孩子。在每个叶子节点上有一个权值(有nn个叶子节点,满足这些权值为1…n1…n的一个排列)。可以任意交换每个非叶子节点的左右孩子。

要求进行一系列交换,使得最终所有叶子节点的权值按照前序遍历序写出来,逆序对个数最少。

解法

我们对每一个叶子节点建立一颗权值线段树,然后,我们考虑将两个叶子节点上的线段树合并起来,然后我们考虑逆序对的个数。

如果我们将左儿子的线段树放在前面,则产生的逆序对数为左儿子右边的sum * 右儿子左边的sum,反之同理。然后我们每次合并求出这两个之中的最小值加入ans中就好了。

代码

令我感到神奇的是,如果我们将dfs中的两句判断放在外面,常数为原来的3倍,如果不开O2就会TLE。

~~ 可我明明打的跟别人一样的代码,别人不开O2都只要300ms。自带常数型选手的悲哀。╮(╯﹏╰)╭ ~~

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <cctype>
#define INF 2139062143
#define MAX 0x7ffffffffffffff
#define del(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
template<typename T>
inline void read(T&x)
{
x=0;T k=1;char c=getchar();
while(!isdigit(c)){if(c=='-')k=-1;c=getchar();}
while(isdigit(c)){x=x*10+c-'0';c=getchar();}x*=k;
}
const int maxn=8000000+5;
struct node{
int lc,rc,sum;
node(int lc=0,int rc=0,int sum=0):lc(lc),rc(rc),sum(sum){}
}T[maxn*4];
int root[maxn];
int a[maxn];
int sz;
ll ans1,ans2; void build(int x){
read(a[x]);
if(a[x]) return;
T[x].lc=++sz;build(T[x].lc);
T[x].rc=++sz;build(T[x].rc);
} void updata(int l,int r,int pos,int val,int &x){
if(!x) x=++sz;
T[x].sum+=val;
if(l==r) return;
int mid=(l+r)/2;
if(pos<=mid) updata(l,mid,pos,val,T[x].lc);
else updata(mid+1,r,pos,val,T[x].rc);
} int Merge(int x,int y){
if(!x||!y) return x+y;
ans1+=1ll*T[T[x].lc].sum*T[T[y].rc].sum;
ans2+=1ll*T[T[x].rc].sum*T[T[y].lc].sum;
T[x].lc=Merge(T[x].lc,T[y].lc);
T[x].rc=Merge(T[x].rc,T[y].rc);
T[x].sum=T[T[x].lc].sum+T[T[x].rc].sum;
return x;
} ll ans=0;
void dfs(int x){
//若为叶子结点,往下递归会TLE???
if(!a[x]){
if(T[x].lc) dfs(T[x].lc);
if(T[x].rc) dfs(T[x].rc);
ans1=0;ans2=0;
root[x]=Merge(root[T[x].lc],root[T[x].rc]);
ans+=1ll*min(ans1,ans2);
}
}
int n;
int main()
{
read(n);
build(sz=1);
for(int i=1;i<=sz;i++)
if(a[i])
updata(1,n,a[i],1,root[i]);
dfs(1);
printf("%lld\n",ans);
return 0;
}

线段树合并(【POI2011】ROT-Tree Rotations)的更多相关文章

  1. bzoj3307雨天的尾巴(权值线段树合并/DSU on tree)

    题目大意: 一颗树,想要在树链上添加同一物品,问最后每个点上哪个物品最多. 解题思路: 1.线段树合并 假如说物品数量少到可以暴力添加,且树点极少,我们怎么做. 首先在一个树节点上标记出哪些物品有多少 ...

  2. CF600E Lomsat gelral——线段树合并/dsu on tree

    题目描述 一棵树有$n$个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. 这个题意是真的窒息...具体意思是说,每个节点有一个颜色,你要找的是每个子树中颜色的众数 ...

  3. 【BZOJ2212】[Poi2011]Tree Rotations 线段树合并

    [BZOJ2212][Poi2011]Tree Rotations Description Byteasar the gardener is growing a rare tree called Ro ...

  4. 【bzoj2212】[Poi2011]Tree Rotations 权值线段树合并

    原文地址:http://www.cnblogs.com/GXZlegend/p/6826614.html 题目描述 Byteasar the gardener is growing a rare tr ...

  5. [BZOJ 2212] [Poi2011] Tree Rotations 【线段树合并】

    题目链接:BZOJ - 2212 题目分析 子树 x 内的逆序对个数为 :x 左子树内的逆序对个数 + x 右子树内的逆序对个数 + 跨越 x 左子树与右子树的逆序对. 左右子树内部的逆序对与是否交换 ...

  6. bzoj2212[Poi2011]Tree Rotations [线段树合并]

    题面 bzoj ans = 两子树ans + min(左子在前逆序对数, 右子在前逆序对数) 线段树合并 #include <cstdio> #include <cstdlib> ...

  7. 【BZOJ2212】[POI2011]Tree Rotations (线段树合并)

    题解: 傻逼题 启发式合并线段树里面查$nlog^2$ 线段树合并顺便维护一下$nlogn$ 注意是叶子为n 总结点2n 代码: #include <bits/stdc++.h> usin ...

  8. BZOJ2212 [Poi2011]Tree Rotations 线段树合并 逆序对

    原文链接http://www.cnblogs.com/zhouzhendong/p/8079786.html 题目传送门 - BZOJ2212 题意概括 给一棵n(1≤n≤200000个叶子的二叉树, ...

  9. bzoj 2212 : [Poi2011]Tree Rotations (线段树合并)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2212 思路:用线段树合并求出交换左右儿子之前之后逆序对的数量,如果数量变小则交换. 实现 ...

  10. BZOJ.2212.[POI2011]Tree Rotations(线段树合并)

    题目链接 \(Description\) 给定一棵n个叶子的二叉树,每个叶节点有权值(1<=ai<=n).可以任意的交换两棵子树.问最后顺序遍历树得到的叶子权值序列中,最少的逆序对数是多少 ...

随机推荐

  1. VUE 利用 webpack 给生产环境和发布环境配置不同的接口地址

    转载地址: https://blog.csdn.net/gebitan505/article/details/58166055 VUE 利用 webpack 给生产环境和发布环境配置不同的接口地址 前 ...

  2. HDU-6217 BBP Formula 脑洞

    题目链接:https://cn.vjudge.net/problem/HDU-6217 题意 已知: \[ \pi = \sum_{k=0}^{\infty }\frac{1}{16^{k}}(\fr ...

  3. Python GitHub上星星数量最多的项目

    GitHub上星星数量最多的项目 """ most_popular.py 查看GitHub上获得星星最多的项目都是用什么语言写的 """ i ...

  4. Python设计模式--单例模式(懒汉式)

    1. 单例模式 --> 单一(唯一)的实例. 在整个运行时间内, 内存中只有一个对象, 一般该对象涉及网络,资源等操作. 2. 单例模式一般分为懒汉式和饿汉式 懒汉式内存占用更加合理. 3. 调 ...

  5. 线程锁的机制Lock

    java.util.concurrent.locks 接口Lock publci interface Lock Lock 实现提供了比使用synchronized方法和语句可获得的更加广泛的锁定操作, ...

  6. @responsebody注解的作用就是让viewresolver不起作用,不返回视图名称而是直接返回的return object

    @responsebody注解的作用就是让viewresolver不起作用,不返回视图名称而是直接返回的return object 2.也可以再方法上添加@ResponseBody注解, 用于这个类里 ...

  7. HDU 5172

    超内存了,呃...不知道如何优化了. 首先要判断区间的和是否和1~n的和相等. 再个,记录下每个数字前一次出现的位置,求这些位置的最大值,如果小于左端点,则表示有这样的一个序列. 呃~~~第二个条件当 ...

  8. C#高级编程八十三天----程序集的含义

    程序集的含义 一.程序集是包括一个或多个类型定义文件和资源文件的集合.它同意我们分析可重用类型的逻辑表示和物理表示. 相当于你定义了一个项目XXProject,项目存在非常多文件(类,窗口,接口,资源 ...

  9. SSD纠错码向LDPC码演变

    作者:Stephen Bates SSD控制器芯片中採用的纠错编码(ECCs)的类型正在发生一场演变.相信很多这篇博文的读者对此都有所了解.传统上採用的纠错码是基于群变换的博斯-查德胡里-霍昆格母(B ...

  10. 运行shell命令

    首先将shell命令命名为.sh文件 将上面的代码保存为test.sh.并 cd 到对应文件夹: chmod +x ./test.sh #使脚本具有运行权限 ./test.sh #运行脚本 假设报错/ ...