sklearn学习4----预处理(1)标准化
一、【标准化】scale:
1、导入模块 from sklearn.preprocessing import scaler
2、作用:直接将给定数据进行标准化
3、使用代码
X_scaled=scaler(X_data)
X_scaled.mean(axis=0) #自己计算标准化之后的均值
X_scalerd.std(axis=0) #自己计算标准化后的方差
二、【标准化】StandardScaler
1、导入模块 from sklearn.preprocessing import StandardScaler
2、作用:可保存训练集中的均值、方差参数,然后直接用于转换测试集数据。
3、使用代码:
ss=StandardScaler()
Xtrain_data=ss.fit_transform(train_data) #标准化训练集然后保存训练集的均值和方差
Xtest_data=ss.transform(test_data) #转换测试集数据
print(ss.mean_)
print(ss.var_)
三、【缩放到指定范围(最大最小化)】MinMaxScaler
1、导入模块:from sklearn.preprocessing import MinMaxScaler
2、作用:将属性缩放到一个指定的最大和最小值(通常是1-0)之间,这样处理可对方差非常小的属性增强其稳定性,也可维持稀疏矩阵中为0的条目。
3、使用代码
'''
preprocessing.MinMaxScaler(feature_range=(0, 1), copy=True) 计算公式:
X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
X_scaled = X_std * (max - min) + min
其中
feature_range : tuple (min, max), default=(0, 1)
''' minmaxscaler = MinMaxScaler()
minmaxscaler.fit_transform(X) minmaxscaler.scale_
minmaxscaler.min_
四、【正则化】 Normalizer
1、导入模块:from sklearn.preprocessing import Normalizer
2、作用:对每个样本计算其p-范数,再对每个元素除以该范数,这使得每个处理后样本的p-范数(l1-norm,l2-norm)等于1。如果后续要使用二次型等方法计算两个样本之间的相似性会有用。
3、使用代码
normalizer =Normalizer().fit(X)
normalizer.transform(X)
sklearn学习4----预处理(1)标准化的更多相关文章
- 关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化
一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std 计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并处以其方差.得到的结果是,对于每个属 ...
- 【原】关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化
一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std 计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并处以其方差.得到的结果是,对于每个属 ...
- 使用sklearn进行数据预处理 —— 归一化/标准化/正则化
一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std 计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并除以其方差.得到的结果是,对于每个属 ...
- 【Sklearn系列】使用Sklearn进行数据预处理
这篇文章主要讲解使用Sklearn进行数据预处理,我们使用Kaggle中泰坦尼克号事件的数据作为样本. 读取数据并创建数据表格,查看数据相关信息 import pandas as pd import ...
- Python: sklearn库——数据预处理
Python: sklearn库 —— 数据预处理 数据集转换之预处理数据: 将输入的数据转化成机器学习算法可以使用的数据.包含特征提取和标准化. 原因:数据集的标准化(服从均值为 ...
- sklearn学习_01
# -*- coding: utf-8 -*- """ Created on Fri Sep 29 11:05:52 2017 机器学习之sklearn @author: ...
- CNN学习笔记:批标准化
CNN学习笔记:批标准化 Batch Normalization Batch Normalization, 批标准化, 是将分散的数据统一的一种做法, 也是优化神经网络的一种方法. 在神经网络的训练过 ...
- sklearn学习笔记(一)——数据预处理 sklearn.preprocessing
https://blog.csdn.net/zhangyang10d/article/details/53418227 数据预处理 sklearn.preprocessing 标准化 (Standar ...
- Python数据预处理(sklearn.preprocessing)—归一化(MinMaxScaler),标准化(StandardScaler),正则化(Normalizer, normalize)
关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常 ...
- sklearn中的数据预处理----good!! 标准化 归一化 在何时使用
RESCALING attribute data to values to scale the range in [0, 1] or [−1, 1] is useful for the optimiz ...
随机推荐
- css3实现滚动手表
静态html: <!DOCTYPE html><html> <head> <meta charset="utf-8" /> < ...
- jQuery.extend()的合并对象功能
jQuery.extend( [ deep ], target, object1, [ objectN ] )合并对象到第一个对象 //deep为boolean类型,其它参数为object类型 var ...
- nyoj92-图像有用区域【BFS】
"ACKing"同学以前做一个图像处理的项目时,遇到了一个问题,他需要摘取出图片中某个黑色线圏成的区域以内的图片,现在请你来帮助他完成第一步,把黑色线圏外的区域全部变为黑色. ...
- Ubuntu双系统后时间不对解决方案
先在ubuntu下更新一下时间,确保时间无误 sudo apt install ntpdate sudo ntpdate time.windows.com 然后将时间更新到硬件上 sudo hwclo ...
- 10行Python代码实现人脸定位
10行python机器学习全卷机网,实现100+张人脸同时定位! 发表评论 1,049 游览 A+ 所属分类:未分类 收 藏 今天介绍一个快速定位人脸的深度学习算法MTCNN,全称是:Multi-t ...
- 数据库优化一般思路(PLSQL、Navicat)
SQL执行过程: 1.执行SQL时,sql解析引擎会被启动 2.数据类型和数据库表定义的数据类型不一致,数据库引擎会自动转化 3.数据库表定义了多个索引,sql引擎会帮你选择最优的一个 4.数据库引擎 ...
- 【hiho一下 第十周】后序遍历
[题目链接]:http://hihocoder.com/problemset/problem/1049 [题意] [题解] 前序遍历的第一个节点; 肯定是整颗树的头结点; 然后在中序遍历中; 得到这个 ...
- 简述Web Service通讯技术的搭建流程
Web Service 基本概念 Web Service也叫XML Web Service WebService是一种可以接收从Internet或者Intranet上的其它系统中传递过来的请求,轻量级 ...
- 2015 Multi-University Training Contest 8 hdu 5381 The sum of gcd
The sum of gcd Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)To ...
- 2016.03.28,英语,《Vocabulary Builder》Unit 07
vis: comes from a Latin verb meaning 'see'. vision: ['vɪʒn] n. 视觉,先见之明,光景,视力,眼力,幻想,影像 vt. 幻想. ; vid- ...