1. 数据分析的任务:数据读写,数据准备(清洗,修整,规范化,重塑,切片切块,变形),转换,建模计算,呈现(模型/数据)

2. 数据集:

bit.ly的1.usa.gov数据:URL缩短服务bit.ly和美国政府usa.gov合作从.gov或.mil用户那里收集的匿名数据

# -*- coding:utf-8 -*-
#导入json模块,将json字符串转换为python字典
import json
from collections import defaultdict
from collections import Counter
from pandas import DataFrame, Series
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt path = "E:/Programming/Python/PythonDataAnalysis/datasets/usagov_bitly/example.txt"
#list comprehension
records = [json.loads(line) for line in open(path)]
#对时区计数, 同时保证tz必须在records中
time_zones = [rec['tz'] for rec in records if 'tz' in rec.keys()]
#--------------方法1:------------
#时区计数
def get_counts(sequence):
counts = {}
for x in sequence:
if x in counts:
counts[x] += 1
else:
counts[x] = 1
return counts
#取得前n个最常使用的时区
def top_counts(count_dict,n = 10):
value_key_pairs = [(count,tz) for tz, count in count_dict.items()]
value_key_pairs.sort()
return value_key_pairs[-n:]
counts = get_counts(time_zones)
print(counts)
top_counts = top_counts(counts)
print(top_counts)
#--------------方法2:------------
def get_counts2(sequence):
counts = defaultdict(int)
for x in sequence:
counts[x] += 1
return counts
#--------------方法3:------------
#引入collections的Counter对象
def get_counts3(time_zones,n=10):
counts = Counter(time_zones)
return counts.most_common(n) top_counts3 = get_counts3(time_zones,10)
print(top_counts3)
#--------------方法3:------------
#用pandas对时区进行计数
#将records转换为DataFrame对象
frame = DataFrame(records)
#frame['tz']返回的对象有一个value_counts方法
tz_counts = frame['tz'].value_counts()
print(tz_counts[:10])
#fillna()函数填补空缺值NA
clean_tz = frame['tz'].fillna("Missing")
print(clean_tz)
#空字符串为Unknown
clean_tz[clean_tz == ''] = "Unknown"
tz_counts = clean_tz.value_counts()
print(tz_counts[:10])
#利用counts的plot方法
tz_counts[:10].plot(kind = "barh",rot=0)
plt.show()
#用户浏览器分析
results = Series([x.split()[0] for x in frame.a.dropna()])
#打印前8的浏览器
print(results.value_counts()[:8])
cframe = frame[frame.a.notnull()]
operating_system = np.where(cframe['a'].str.contains("Windows"),"Windows","Not Windows")
windows = 0
nonWindows = 0
for op in operating_system:
if op == "Windows":
windows += 1
else:
nonWindows += 1
print("windows:",windows,"nonWindows:",nonWindows)
#使用windows/nonwindows给时区分组
by_tz_os = cframe.groupby(['tz',operating_system])
agg_counts = by_tz_os.size().unstack().fillna(0)
print(agg_counts[:10])
#选取最常见的时区
indexer = agg_counts.sum(1).argsort()
print(indexer)
count_subset = agg_counts.take(indexer)[-10:]
print(count_subset)
#绘制windows/nonwindows 堆叠条形图
count_subset.plot(kind="barh",stacked=True)
#不加这句语句,在Ipython中可以显示但是脚本运行不显示
plt.show()
#规范化
normed_subset = count_subset.div(count_subset.sum(1),axis = 0)
normed_subset.plot(kind = "barh",stacked=True)
plt.show()

MovieLens 1M数据集:20世纪90年末到21世纪初6000名用户提供的4000部电影评分100万条数据,分为3个表:电影评分,电影元数据(类型,年代),用户的人口统计学数据(年龄,右边,性别,职业)

# -*- coding: utf-8 -*-
import pandas as pd
import os
#数据读取,读成3个表
path = 'E:/Programming/Python/PythonDataAnalysis/datasets/movielens/'
unames = ['user_id','gender','age','occupation','zip']
upath = os.path.join(path,'users.dat')
users = pd.read_table(upath,sep = "::",header=None,names=unames,engine='python')
rnames = ['user_id',"movie_id","rating","timestamp"]
ratings = pd.read_table(path+'ratings.dat',sep = "::",header=None,names=rnames,engine='python')
mnames = ['movie_id','title','genres']
movies = pd.read_table(path+'movies.dat',sep ="::",header=None,names=mnames,engine='python')
#数据表整合
data = pd.merge(pd.merge(ratings,users),movies)
print(data[:10])
print(data.ix[0])
#按性别计算每部电影的得分,index 中是标签,columns中是列标签
mean_ratings = data.pivot_table('rating',index = 'title',columns = "gender",aggfunc='mean')
print(mean_ratings[:10])
#过滤掉评分不足250条的电影
ratings_by_title = data.groupby('title').size()
print(ratings_by_title[:10])
active_titles = ratings_by_title[ratings_by_title >= 250]
print(active_titles)
#按照评论>=250的index筛选
mean_ratings = mean_ratings.ix[active_titles.index]
top_female_ratings = mean_ratings.sort_index(by='F',ascending=False)
print(top_female_ratings[:10])
#计算男性女性得分分歧最大的电影
mean_ratings['diff'] = mean_ratings['M'] - mean_ratings['F'] sorted_by_diff = mean_ratings.sort_index(by = 'diff')
#分歧最大且女性更喜欢的电影
print(sorted_by_diff[:15])
#对结果反序取出前15行,男性观众更喜欢的电影
print(sorted_by_diff[::-1][:15])
#分歧最大的电影,计算方差或者标准差
rating_std_by_title = data.groupby('title')['rating'].std()
#使用active_title进行过滤
rating_std_by_title = rating_std_by_title.ix[active_titles]
rating_std_by_title.order(ascending=False)
print(rating_std_by_title[:15])

1880-2010年间婴儿名字频率数据

# -*- coding:utf-8 -*-
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
path = 'E:/Programming/Python/PythonDataAnalysis/datasets/babynames/'
names1880 = pd.read_csv(path+'yob1880.txt',names = ['name','sex','births'],engine='python')
#按照sex对数据进行简单分组
names1880.groupby('sex').births.sum()
#将单个文件中的数据整合到一个数据表中
years = range(1880,2011)
pieces = []
columns = ['name','sex','birth']
for year in years:
subpath = 'yob%d.txt' % year
frame = pd.read_csv(path+subpath,names = columns)
frame['year'] = year
pieces.append(frame)
names = pd.concat(pieces,ignore_index = True)
#使用pivot_table()函数进行聚合
total_births = names.pivot_table('birth',index = 'year',columns = 'sex',aggfunc = sum)
print(total_births.tail())
#插入prop列存放指定的婴儿数相对于总出生数的比例
def add_prop(group):
births = group.birth.astype(float)
group['prop'] = births/births.sum()
return group names = names.groupby(['year','sex']).apply(add_prop)
#取出每个sex/year组合的前1000个名字
def get_top1000(group):
return group.sort_values(by='birth',ascending=False)[1:1000]
grouped = names.groupby(['year','sex'])
top1000 = grouped.apply(get_top1000)
#接下来的'命名趋势'分析针对这top1000个数据集
#取出男性
boys = top1000[top1000.sex == 'M']
#取出女性
girls = top1000[top1000.sex == 'F']
total_births = top1000.pivot_table('birth',index = 'year',columns = 'name',aggfunc = sum)
subset = total_births[['John','Harry','Mary','Marilyn']]
subset.plot(subplots = True,figsize = (12,10),grid=False,title = "Number of births per year")
plt.show()
#观察名字多样性变化
table = top1000.pivot_table('prop',index = 'year',columns = 'sex',aggfunc = sum)
table.plot(title = "sum of table1000.prop by year and sex",yticks = np.linspace(0,1.2,13),xticks = range(1880,2020,10))
plt.show()
# 名字最后一个字母的变化

  

[读书笔记] Python数据分析 (二) 引言的更多相关文章

  1. [读书笔记] Python 数据分析 (十二)高级NumPy

    da array: 一个快速而灵活的同构多维大数据集容器,可以利用这种数组对整块的数据进行一些数学运算 数据指针,系统内存的一部分 数据类型 data type/dtype 指示数据大小的元组 str ...

  2. [读书笔记] Python数据分析 (三) IPython

    1. 什么是IPython IPyhton 本身没有提供任何的计算或者数据分析功能,在交互式计算和软件开发者两个方面最大化地提高生产力,execute-explore instead of edit- ...

  3. [读书笔记] Python数据分析 (一) 准备工作

    1. python中数据结构:矩阵,数组,数据框,通过关键列相互联系的多个表(SQL主键,外键),时间序列 2. python 解释型语言,程序员时间和CPU时间衡量,高频交易系统 3. 全局解释器锁 ...

  4. [读书笔记] Python数据分析 (四) 数组和矢量计算

    Numpy:高性能计算和数学分析的基础包 ndarray, 一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组 用于对数组数据进行快速运算的标准数学函数 用于读写磁盘数据的工具和用于操作内存 ...

  5. [读书笔记] Python数据分析 (五) pandas入门

    pandas: 基于Numpy构建的数据分析库 pandas数据结构:Series, DataFrame Series: 带有数据标签的类一维数组对象(也可看成字典) values, index 缺失 ...

  6. [读书笔记] Python 数据分析 (八)画图和数据可视化

    ipython3 --pyplot pyplot: matplotlib 画图的交互使用环境

  7. [读书笔记] Python 数据分析 (十一)经济和金融数据应用

    resample: 重采样函数,可以按照时间来提高或者降低采样频率,fill_method可以使用不同的填充方式. pandas.data_range 的freq参数枚举: Alias Descrip ...

  8. 《Linux内核设计与实现》读书笔记——第一、 二章

    <Linux内核设计与实现>读书笔记--第一. 二章 标签(空格分隔): 20135321余佳源 第一章 Linux内核简介 1.Unix内核特点 十分简洁:仅提供几百个系统调用并且有明确 ...

  9. 《Linux内核设计与实现》读书笔记(十二)- 内存管理【转】

    转自:http://www.cnblogs.com/wang_yb/archive/2013/05/23/3095907.html 内核的内存使用不像用户空间那样随意,内核的内存出现错误时也只有靠自己 ...

随机推荐

  1. Android开发人员必备的10 个开发工具

      工欲善其事,必先利其器,Android SDK 本身包含很多帮助开发人员设计.开发.测试和发布 Android 应用的工具,在本文中,我们将讨论 10 个最常用的工具. 1.Eclipse ADT ...

  2. 配置sudo命令行为审计

    1.检查是否安装 rpm -aq sudo rsyslog #检验是否安装此软件 ***如果没有需执行(yum install sudo rsyslog -y)安装*** 2.配置审计 echo &q ...

  3. LVS的使用

    lvs: Linux Virtual Server l4:四层交换:四层路由: 根据请求报文的目标IP和PORT将其转发至后端主机集群中的某一台主机(根据挑选算法): netfilter: PRERO ...

  4. PHP做的简单计算器

    使用php做的简易计算器 能够进行+,-,*,/运算. 如下图 <?php if (isset($_POST['button'])) { $num1 = $_POST['num1']; $num ...

  5. 参数化取值策略Unique

    Unique:主要是强调取值的唯一性,如果到最后没有该值了,LR提供了其他解决方案,如图所示: 此处的下拉列表中提供了三种方式,具体如下: About Vuser,当取值次数超过参数的行数时,忽略脚本 ...

  6. ContextLoaderListener的说明

    ContextLoaderListener是配置在web.xml里的,具体如下: <!-- ContextLoaderListener是个监听器,用来监听容器启动事件,监听到容器启动事件后 其c ...

  7. 使用Eclipse进行远程调控

    什么是远程调试,就是在A机器上利用Eclipse单步跟踪调试B机器上的Web应用,当然调试A机器上Web应用也是没有问题的,90%我都是调试本机的Web应用,远程调试的意义我想我不用说了,大家都会想到 ...

  8. [Design]Adobe CS6 2%错误问题

    错误描述:FATAL: Payload '{3F023875-4A52-4605-9DB6-A88D4A813E8D} Camera Profiles Installer 6.0.98.0' info ...

  9. [SharePoint2010开发入门经典]四、开发者常见任务

    本章概要: 1.创建不同种类的web部件,包括标准的,可视化的还有数据绑定web部件 2.理解列和内容类型,如何使用它们创建列表 3.理解如何与SPS交互,使用SPS API调用数据 4.创建编辑页面 ...

  10. [using_microsoft_infopath_2010]Chapter 14高级话题

    本章提要: 1.剖析表单逻辑 2.从多个表单中合并数据 3.重新连接XML表单到XSN模板文件 4.在repeating table中设置默认值 5.离线填写表单的权衡