题目描述

四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和。例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案,25=4^{2}+3^{2}25=42+32 和25=5^{2}25=52 。给定的正整数nn ,编程统计它能分解的方案总数。注意:25=4^{2}+3^{2}25=42+32 和25=3^{2}+4^{2}25=32+42 视为一种方案。

输入输出格式

输入格式:

第一行为正整数tt (t\le 100t≤100 ),接下来tt 行,每行一个正整数nn (n\le 32768n≤32768 )。

输出格式:

对于每个正整数nn ,输出方案总数。

输入输出样例

输入样例#1: 复制

1
2003
输出样例#1: 复制
48



$N^4$暴力可过
正解是背包$dp[i][j]$表示用$i$种平方数拼出$j$的方案数
// luogu-judger-enable-o2
#include<iostream>
#include<cstdio>
#define LL long long
using namespace std;
const int MAXN=1e5+;
int dp[][MAXN];
int main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#else
#endif
dp[][]=;
for(register int i=;i<=;i++)
for(register int j=;j<=;j++)
for(register int k=;k<=;k++)
if(i*i<=k)
dp[j][k]+=dp[j-][k-i*i];
int T;
scanf("%d",&T);
while(T--)
{
int a;
scanf("%d",&a);
printf("%d\n",dp[][a]+dp[][a]+dp[][a]+dp[][a]);
}
return ;
}
// luogu-judger-enable-o2
#include<iostream>
#include<cstdio>
#define LL long long
using namespace std;
const int MAXN=1e6+;
int mul[MAXN],dp[MAXN];
int ans[MAXN];
int main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#else
#endif
int N=;
for(int i=;i<=N;i++) mul[i]=i*i;
for(int i=;i<=N;i++) ans[ mul[i] ] ++;
for(int i=;i<=N;i++)
for(int j=i;j<=N;j++)
ans[ mul[i]+mul[j] ] ++;
for(int i=;i<=N;i++)
for(int j=i;j<=N;j++)
for(int k=j;k<=N;k++)
ans[ mul[i]+mul[j]+mul[k] ] ++;
for(int i=;i<=N;i++)
for(int j=i;j<=N;j++)
for(int k=j;k<=N;k++)
for(int l=k;l<=N;l++)
ans[ mul[i]+mul[j]+mul[k]+mul[l] ]++;
int T;
scanf("%d",&T);
while(T--)
{
int a;
scanf("%d",&a);
printf("%d\n",ans[a]);
} return ;
}
 

洛谷P1586 四方定理的更多相关文章

  1. 洛谷——P1586 四方定理

    P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42,当然 ...

  2. 洛谷 P1586 四方定理

    P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=1​2​​+2​2​​+2​ ...

  3. 洛谷p1586四方定理题解

    题目 这个题的本质是动态规划中的背包问题. 为什么会想到背包呢. 因为往往方案数不是排列组合就是递推或者是dp,当然还有其他的可能.我们可以把一个数的代价当成这个数的平方,价值就是一个方案数.由于这个 ...

  4. P1586 四方定理

    题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...

  5. 洛谷 P3834 卢卡斯定理 题解

    题面 首先你需要知道这条定理: C(n,m)=C(n%p,m%p)*C(n/p,m/p); 这样可以递归实现: 注意坑点:是C(n+m,m),并不是C(n,m); #include <bits/ ...

  6. 【Luogu】P1586四方定理(DP)

    题目链接 此题使用DP.设f[i][j]表示数i用j个数表示,则对于所有的k<=sqrt(i),有 f[i][j]=∑f[i-k*k][j-1] 但是这样会有重复情况.所以先枚举k,再枚举i和j ...

  7. luogu P1586 四方定理(背包)

    题意 题解 首先吐槽一下体面的第一句话.反正我不知道(可能是因为我太菜了) 可能没有睡醒,没看出来是个背包. 但告诉是个背包了应该就好做了. #include<iostream> #inc ...

  8. 【数论】卢卡斯定理模板 洛谷P3807

    [数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...

  9. (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)

    前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...

随机推荐

  1. C++ vector基本用法

    转自金河http://www.cnblogs.com/wang7/archive/2012/04/27/2474138.html 1 基本操作 (1)头文件#include<vector> ...

  2. pandas 2 选择数据

    from __future__ import print_function import pandas as pd import numpy as np np.random.seed(1) dates ...

  3. [Angular + TsLint] Disable directive selector tslint error

    @Directive({ // tslint:disable-next-line:directive-selector selector: '[scrollable]' })

  4. [Perl系列—] 2. Perl 中的引用使用方法

    Perl 中的引用,为什么要使用引用? 对于熟悉C语言的开发人员来说, 指针这个概念一定不陌生. Perl 的引用就是指针,能够指向变量.数组.哈希表甚至子程序. Perl5中的两种Perl引用类型为 ...

  5. poj_2481,Cows,树状数组

    将e按从大到小排序,统计前i-1个中比 #include<iostream> #include<cstdio> #include<cstring> #include ...

  6. The while statement

    Computers are often used to automate repetitive tasks. Repeating identical or similar tasks without ...

  7. sqoop配置安装以及导入

    安装sqoop的前提是已经具备java和hadoop的环境 1.上传并解压 (要导mysql的数据)得加入mysql的jdbc驱动包 接下来验证启动 Sqoop的数据导入 “导入工具”导入单个表从RD ...

  8. java 类和对象1

    编写一个Java应用程序,该程序中有3个类:Lader.Circle和主类A.具体要求如下:Lader类具有类型为double的上底.下底.高.面积属性,具有返回面积的功能,包括一个构造方法对上底.下 ...

  9. PostgreSQL两种事务隔离级

    PostgreSQL两种事务隔离级别: 读已提交:PostgreSQL中缺省隔离级别.当一个事务运行在这个隔离级别时,一个SELECT查询只能看到查询开始之前提交的数据而永远无法看到未提交的数据或者在 ...

  10. appium使用教程(一 环境搭建)-------------2.安装部署

    1)      安装appium     2)      SDK(不建议使用模拟器,占用内存很大,会造成机器卡顿.另外模拟器还存在兼容性问题:pc为x86架构,绝大多数的手机都是ARM架构,app的兼 ...