BZOJ 4771 主席树+倍增+set
思路:
因为有深度的限制,并且我们是在线段树上维护权值,所以我们把点按照dep排序,然后一个一个修改...主席树的下标就是dfs序,子树的查询就是区间查询...
但是发现这样怎么去维护LCA呢...因为要求有序,所以我们可以用set来维护相同颜色的节点...如果把一个点加入集合之后这个点前驱为x,后继为y,那么我们去修正,把xy的LCA+1,然后x和当前点的LCA-1,当前点和y的LCA-1...
from neighthorn
//By SiriusRen
#include <set>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=;
int n,m,cases,v[N],next[N],first[N],tot,fa[N][],dfn[N],cnt,root[N],lst[N],dep[N];
int tree[N*],lson[N*],rson[N*],xx,yy,ans;
struct Node{int x,deep,col;}node[N];
bool cmp(Node a,Node b){return a.deep<b.deep;}
bool cmp2(Node a,Node b){return a.x<b.x;}
struct Cmp{bool operator()(Node a,Node b){return dfn[a.x]<dfn[b.x];}};
set<Node,Cmp>s[N];set<Node,Cmp>::iterator it,it2,it3;
void add(int x,int y){v[tot]=y,next[tot]=first[x],first[x]=tot++;}
void dfs(int x){
dfn[x]=++cnt;
for(int i=first[x];~i;i=next[i])if(v[i]!=fa[x][])
dep[v[i]]=node[v[i]].deep=node[x].deep+,dfs(v[i]);
lst[x]=cnt;
}
void insert(int l,int r,int &pos,int last,int num,int wei){
pos=++cnt,tree[pos]=tree[last]+wei;
if(l==r)return;
int mid=(l+r)>>;
if(mid<num)lson[pos]=lson[last],insert(mid+,r,rson[pos],rson[last],num,wei);
else rson[pos]=rson[last],insert(l,mid,lson[pos],lson[last],num,wei);
}
int query(int l,int r,int pos,int L,int R){
if(l>=L&&r<=R)return tree[pos];
int mid=(l+r)>>;
if(mid<L)return query(mid+,r,rson[pos],L,R);
else if(mid>=R)return query(l,mid,lson[pos],L,R);
else return query(l,mid,lson[pos],L,R)+query(mid+,r,rson[pos],L,R);
}
int lca(int x,int y){
if(dep[x]<dep[y])swap(x,y);
for(int i=;~i;i--)if(dep[x]-(<<i)>=dep[y])x=fa[x][i];
if(x==y)return x;
for(int i=;~i;i--)if(fa[x][i]!=fa[y][i])x=fa[x][i],y=fa[y][i];
return fa[x][];
}
int main(){
scanf("%d",&cases);
while(cases--){
memset(first,-,sizeof(first)),ans=tot=cnt=;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%d",&node[i].col),node[i].x=i;
for(int i=;i<=n;i++)scanf("%d",&fa[i][]),add(fa[i][],i);
for(int j=;j<=;j++)for(int i=;i<=n;i++)fa[i][j]=fa[fa[i][j-]][j-];
dep[]=node[].deep=,dfs(),cnt=,sort(node+,node++n,cmp);
for(int i=;i<=n;i++){
int lst=node[i-].deep,now=node[i].deep;
insert(,n,root[now],root[lst],dfn[node[i].x],);
s[node[i].col].insert(node[i]),it=s[node[i].col].find(node[i]);it2=it,++it2;
if(s[node[i].col].size()>&&it!=s[node[i].col].begin()&&it2!=s[node[i].col].end())
it2=it,it2--,it3=it,it3++,insert(,n,root[now],root[now],dfn[lca((*it2).x,(*it3).x)],);
if(it!=s[node[i].col].begin())it2=it,it2--,insert(,n,root[now],root[now],dfn[lca((*it2).x,(*it).x)],-);
it2=it,++it2;
if(it2!=s[node[i].col].end())insert(,n,root[now],root[now],dfn[lca((*it2).x,(*it).x)],-);
}
while(m--){
scanf("%d%d",&xx,&yy),xx^=ans,yy^=ans;
printf("%d\n",ans=query(,n,root[min(dep[xx]+yy,node[n].deep)],dfn[xx],lst[xx]));
}
for(int i=;i<=n;i++)s[i].clear(),root[i]=;
}
}
BZOJ 4771 主席树+倍增+set的更多相关文章
- BZOJ_3545_[ONTAK2010]Peaks_主席树+倍增+kruscal重构树+dfs序
BZOJ_3545_[ONTAK2010]Peaks_主席树+倍增+kruscal重构树 Description 在Bytemountains有N座山峰,每座山峰有他的高度h_i.有些山峰之间有双向道 ...
- 洛谷P3248 树 [HNOI2016] 主席树+倍增+分治
正解:主席树+倍增+分治 解题报告: 传送门! 首先看到这题会想到之前考过的这题 但是那题其实简单一些,,,因为那题只要用个分治+预处理就好,只是有点儿思维难度而已 这题就不一样,因为它说了是按照原树 ...
- [BZOJ 4771]七彩树(可持久化线段树+树上差分)
[BZOJ 4771]七彩树(可持久化线段树+树上差分) 题面 给定一棵n个点的有根树,编号依次为1到n,其中1号点是根节点.每个节点都被染上了某一种颜色,其中第i个节点的颜色为c[i].如果c[i] ...
- bzoj 4539 [Hnoi2016]树——主席树+倍增
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4539 明明就是把每次复制的一个子树当作一个点,这样能连出一个树的结构,自己竟然都没想到.思维 ...
- bzoj 2588: Spoj 10628. Count on a tree【主席树+倍增】
算是板子,把值离散化,每个点到跟上做主席树,然后查询的时候主席树上用u+v-lca-fa[lca]的值二分 #include<iostream> #include<cstdio> ...
- BZOJ 3551/3545: [ONTAK2010]Peaks加强版 (Kruskal树+dfs序上的主席树+倍增)
Orz PoPoQQQ 学到了维护子树信息的时候用dfsdfsdfs序套主席树节省线段树空间. 学到了怎么用指针写可持久化线段树-emmm- CODE 只贴上3551加强版带强制在线的代码 #incl ...
- BZOJ 3551: [ONTAK2010]Peaks加强版 Kruskal重构树+dfs序+主席树+倍增
建出来 $Kruskal$ 重构树. 将询问点向上跳到深度最小,且合法的节点上. 那么,得益于重构树优美的性质,这个最终跳到的点为根的所有子节点都可以与询问点互达. 对于子树中求点权第 $k$ 大的问 ...
- 洛谷P4180 [Beijing2010组队]次小生成树Tree(最小生成树,LCT,主席树,倍增LCA,倍增,树链剖分)
洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小 ...
- bzoj 1901 主席树+树状数组
修改+查询第k小值 单纯主席树修改会打乱所有,所以再套一个树状数组维护前缀和使得修改,查询都是log 对了,bzoj上不需要读入组数,蜜汁re.. #include<cstdio> #in ...
随机推荐
- boost::mutex::scoped_lock
在三维重建过程中,世界地图 Map &world作为唯一 访问/更新 对象,可以使用boost::mutex::scoped_lock . 一:boost::mutex::scoped_loc ...
- AI不与人为敌
业界广为流传着一句话:有多少人工就有多少智能. 其实还应该有一句话:有多少付出就因该有多少回报.公正是世界永恒的话题. 一.人工智能还是人工愚蠢 科技从来没有善恶,也不会杀人,愚蠢的人比聪明的人做的错 ...
- 虚拟机+linux+大杂烩
出于项目需要,需要用到linux系统.这玩意儿平时很少用,要说体验度还是windows更人性化一些. 1.虚拟机的安装,这个没说的,百度VMware直接下最新版安装就好. 2.接着是linux系统的安 ...
- MVC POST请求后执行javascript代码
[HttpPost] public ActionResult PostTest() { //你的业务代码 //...... //要执行的js string js = "window.loca ...
- 迭代器与index遍历
迭代器用于链式组织的序列. index用于线性组织的序列.
- HDU 2266 How Many Equations Can You Find(模拟,深搜)
题目 这是传说中的深搜吗....不确定,,,,貌似更加像是模拟,,,, //我要做深搜题目拉 //实际上还是模拟 #include<iostream> #include<string ...
- 安装 Ubuntu 14.04 之后要做的一些事
转自: http://www.cnblogs.com/marcowei/p/3841342.html 安装 ubuntu14.04 之后要做的一些事 前言: 用 ubuntu14.04 也有一段时间 ...
- [luogu1447 NOI2010] 能量采集 (容斥原理)
传送门 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的 ...
- Solr与Elasticsearch比较
Solr优点1.Solr有一个更大.更成熟的用户.开发和贡献者社区.2.支持添加多种格式的索引,如:HTML.PDF.微软 Office 系列软件格式以及 JSON.XML.CSV 等纯文本格式.3. ...
- 如何彻底卸载系统自带的IE浏览器
IE浏览器是windows系统上自带的浏览器,有时我们想要用其他的浏览器,例如chrome,卸载IE浏览器,那么应该如何卸载呢?下面就以win7上的IE9为例,告诉大家如何卸载IE浏览器. 方法/步骤 ...