Problem 4

# Problem_4
"""
A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99.
Find the largest palindrome made from the product of two 3-digit numbers.
找到两个三位数数字相乘能得到的最大的回文数字
"""
palindroms = {}
for x in range(100, 1000):
for y in range(100, 1000):
num = str(x * y)
length = len(num)
mid = length // 2
formar = num[:mid]
latter = num[mid:][::-1]
if not length % 2 == 0:
latter = num[mid+1:][::-1]
if formar == latter:
value = str(x) + '*' + str(y)
palindroms[int(num)] = value print(palindroms)
max_key = max(palindroms)
max_value = palindroms[max_key]
print(max_key, '==>', max_value)

Problem 4的更多相关文章

  1. 1199 Problem B: 大小关系

    求有限集传递闭包的 Floyd Warshall 算法(矩阵实现) 其实就三重循环.zzuoj 1199 题 链接 http://acm.zzu.edu.cn:8000/problem.php?id= ...

  2. No-args constructor for class X does not exist. Register an InstanceCreator with Gson for this type to fix this problem.

    Gson解析JSON字符串时出现了下面的错误: No-args constructor for class X does not exist. Register an InstanceCreator ...

  3. C - NP-Hard Problem(二分图判定-染色法)

    C - NP-Hard Problem Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:262144 ...

  4. Time Consume Problem

    I joined the NodeJS online Course three weeks ago, but now I'm late about 2 weeks. I pay the codesch ...

  5. Programming Contest Problem Types

        Programming Contest Problem Types Hal Burch conducted an analysis over spring break of 1999 and ...

  6. hdu1032 Train Problem II (卡特兰数)

    题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能.    (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...

  7. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  8. [LeetCode] Water and Jug Problem 水罐问题

    You are given two jugs with capacities x and y litres. There is an infinite amount of water supply a ...

  9. [LeetCode] The Skyline Problem 天际线问题

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  10. PHP curl报错“Problem (2) in the Chunked-Encoded data”解决方案

    $s = curl_init(); curl_setopt($s, CURLOPT_POST, true); curl_setopt($s, CURLOPT_POSTFIELDS, $queryStr ...

随机推荐

  1. MySQL改动rootpassword的多种方法

     方法1: 用SET PASSWORD命令 mysql -u root mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('newp ...

  2. swift 声明特性 类型特性

    原文地址:http://www.cocoachina.com/newbie/basic/2014/0612/8801.html 特性提供了关于声明和类型的很多其它信息.在Swift中有两类特性,用于修 ...

  3. JS经常使用表单验证总结

    <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/ ...

  4. 51-nod -1284 2 3 5 7的倍数

    1284 . 2 3 5 7的倍数 基准时间限制:1 秒 空间限制:65536 KB 分值: 5 给出一个数N,求1至N中,有多少个数不是2 3 5 7的倍数. 比如N = 10,仅仅有1不是2 3 ...

  5. luogu3811 【模板】乘法逆元

    题目大意:给出n,求1~n所有数的乘法逆元. 乘法逆元的概念是:如果b*rev(b)≡1 (mod p),p与b互质,则rev(b)就是b的模p乘法逆元.乘法逆元往往用于除法取模. 具体操作详见htt ...

  6. Makefile中用宏定义进行条件编译(gcc -D)/在Makefile中进行宏定义-D【转】

    本文转载自:http://blog.csdn.net/maopig/article/details/7230311 在源代码里面如果这样是定义的:#ifdef   MACRONAME//可选代码#en ...

  7. 11.修改WSDL文档

    http://localhost:8077/person?wsdl可以由你来控制的.拿Person这个例子来说.

  8. Codeforces Round #512 (Div. 2) D.Vasya and Triangle 数学

    题面 题意:给你n,m,k,在你在(0,0)到(n,m)的矩形内,选3个格点(x,y都是整数),使得三角形面积为n*m/k,不能找到则输出-1 题解:由毕克定理知道,格点多边形的面积必为1/2的整数倍 ...

  9. Codeforces Round #438 (Div.1+Div.2) 总结

    本来兴致勃勃的想乘着这一次上紫,于是很早很早的到了机房 但是好像并没有什么用,反而rating-=47 Codeforces Round #438(Div.1+Div.2) 今天就这样匆匆的总结一下, ...

  10. java三大版本解析

    JAVA三大版本代表着JAVA技术的三个应用领域:JAVASE.JAVAME.JAVAEE. JAVA以前很长一段时间被称为JAVA2,所以现在很多人习惯称为J2SE.J2ME.J2EE,它们表示的含 ...