https://www.luogu.org/problem/show?pid=1238

题目描述

有一个m*n格的迷宫(表示有m行、n列),其中有可走的也有不可走的,如果用1表示可以走,0表示不可以走,文件读入这m*n个数据和起始点、结束点(起始点和结束点都是用两个数据来描述的,分别表示这个点的行号和列号)。现在要你编程找出所有可行的道路,要求所走的路中没有重复的点,走时只能是上下左右四个方向。如果一条路都不可行,则输出相应信息(用-l表示无路)。

输入输出格式

输入格式:

第一行是两个数m,n(1<m,n<15),接下来是m行n列由1和0组成的数据,最后两行是起始点和结束点。

输出格式:

所有可行的路径,描述一个点时用(x,y)的形式,除开始点外,其他的都要用“一>”表示方向。

如果没有一条可行的路则输出-1。

输入输出样例

输入样例#1:

5 6
1 0 0 1 0 1
1 1 1 1 1 1
0 0 1 1 1 0
1 1 1 1 1 0
1 1 1 0 1 1
1 1
5 6
输出样例#1:

(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(3,4)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(3,4)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6) 没有SJ,搜索顺序只能是 左 上 右 下
 #include <cstdio>

 int n,m,sx,sy,tx,ty;
bool vis[][],flag;
bool can_go[][];
int fx[]={,-,,};
int fy[]={-,,,}; struct Type {
int x[],y[];
int cnt;
}ans; void DFS(int nowx,int nowy)
{
if(nowx==tx&&nowy==ty)
{
flag=;
printf("(%d,%d)->",sx,sy);
for(int i=; i<ans.cnt; ++i)
printf("(%d,%d)->",ans.x[i],ans.y[i]);
printf("(%d,%d)\n",ans.x[ans.cnt],ans.y[ans.cnt]);
return ;
}
for(int i=; i<; ++i)
{
int tox=nowx+fx[i],toy=nowy+fy[i];
if(tox<||toy<||tox>m||toy>n) continue;
if(vis[tox][toy]||!can_go[tox][toy]) continue;
vis[tox][toy]=;
ans.x[++ans.cnt]=tox;
ans.y[ans.cnt]=toy;
DFS(tox,toy);
vis[tox][toy]=;
ans.cnt--;
}
} inline void read(int &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
} int Aptal()
{
read(m),read(n);
for(int x,i=; i<=m; ++i)
for(int j=; j<=n; ++j)
read(x),can_go[i][j]=x;
read(sx),read(sy),read(tx),read(ty);
vis[sx][sy]=; DFS(sx,sy);
if(!flag) puts("-1");
return ;
} int Hope=Aptal();
int main(){;}

洛谷—— P1238 走迷宫的更多相关文章

  1. 洛谷P1238 走迷宫

    洛谷1238 走迷宫 题目描述 有一个m*n格的迷宫(表示有m行.n列),其中有可走的也有不可走的,如果用1表示可以走,0表示不可以走,文件读入这m*n个数据和起始点.结束点(起始点和结束点都是用两个 ...

  2. 洛谷——P1238 走迷宫

    P1238 走迷宫 题目描述 有一个m*n格的迷宫(表示有m行.n列),其中有可走的也有不可走的,如果用1表示可以走,0表示不可以走,文件读入这m*n个数据和起始点.结束点(起始点和结束点都是用两个数 ...

  3. 洛谷P1238 走迷宫题解

    题目描述 有一个m*n格的迷宫(表示有m行.n列),其中有可走的也有不可走的,如果用1表示可以走,0表示不可以走,文件读入这m*n个数据和起始点.结束点(起始点和结束点都是用两个数据来描述的,分别表示 ...

  4. 洛谷 P1238 走迷宫

    因为小处疏漏,多花了半小时的水题 题目描述 有一个m*n格的迷宫(表示有m行.n列),其中有可走的也有不可走的,如果用1表示可以走,0表示不可以走,文件读入这m*n个数据和起始点.结束点(起始点和结束 ...

  5. 洛谷P1605走迷宫

    传送 这是一道dfs,但是...但是....但是它竟然被放在bfs练习题辣!!!! 打了半天bfs,发现路径不会标记了,于是发现好像有什么不对的,似乎dfs要简单一点,于是半路跑去打dfs,结果打了半 ...

  6. P1238 走迷宫

    原题链接 https://www.luogu.org/problemnew/show/P1238 为了巩固一下刚学习的广搜,练一下迷宫类型的题 不过这道题我用的深搜..... 看问题,我们就知道这道题 ...

  7. 洛谷P1363 幻想迷宫

    题目描述 背景 Background (喵星人LHX和WD同心协力击退了汪星人的入侵,不幸的是,汪星人撤退之前给它们制造了一片幻象迷宫.) WD:呜呜,肿么办啊…… LHX:momo...我们一定能走 ...

  8. 洛谷 P1363 幻想迷宫 解题报告

    P1363 幻想迷宫 题目描述 背景 Background (喵星人LHX和WD同心协力击退了汪星人的入侵,不幸的是,汪星人撤退之前给它们制造了一片幻象迷宫.) WD:呜呜,肿么办啊-- LHX:mo ...

  9. 洛谷 P1363 幻想迷宫

    题目描述 背景 Background (喵星人LHX和WD同心协力击退了汪星人的入侵,不幸的是,汪星人撤退之前给它们制造了一片幻象迷宫.) WD:呜呜,肿么办啊…… LHX:momo...我们一定能走 ...

随机推荐

  1. zoj3822 Domination 概率dp --- 2014 ACM-ICPC Asia Mudanjiang Regional Contest

    一个n行m列的棋盘,每次能够放一个棋子.问要使得棋盘的每行每列都至少有一个棋子 须要的放棋子次数的期望. dp[i][j][k]表示用了k个棋子共能占据棋盘的i行j列的概率. 那么对于每一颗棋子,在现 ...

  2. 在linux下怎么安装.bin的文件

    *.bin文件安装方法: 1.运行终端到文件目录下2.在终端输入:sudo chmod +x *.bin3.再输入:sudo ./*.bin可安装到任意目录,./*.bin可安装到当前用户有权限的目录

  3. [JavaEE] Spring事务配置的五种方式

    前段时间对Spring的事务配置做了比较深入的研究,在此之间对Spring的事务配置虽说也配置过,但是一直没有一个清楚的认识.通过这次的学习发觉Spring的事务配置只要把思路理清,还是比较好掌握的. ...

  4. hihoCoder-1633 ACM-ICPC北京赛区2017 G.Liaoning Ship’s Voyage 线段与三角形规范相交

    题面 题意:给你一个20*20的地图,起点(0,0),终点(n-1,n-1),有障碍的点为‘#’,每次可以向8个方向走一步,还给了一个三角形,除了障碍以外,到这8个方向上的点的线段如果没有与三角形相交 ...

  5. springmvc-servlet.xml(springmvc-servlet.xml 配置 增强配置)

    <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...

  6. C#中DBNull问题

    当数据库中一个字段不是必填项时,在往数据库中插入数据的时候往往会插入一个空字符串就草草了事了.在这里用DBNull可以解决这个问题 /// <summary> /// 插入数据 /// & ...

  7. Docker installs

    docker要求系统内核必须在3.10以上uname -r 命令查看你当前的内核版本 1.更新yum源并删除旧版docker yum remove docker docker-common docke ...

  8. java8-2-Lambda表达式

    java8的lambda表达式:使得代码更加紧凑:修改方法的能力:更好的支持多核处理(并行处理函数和filter\map\reduce) 例子1: java7中,list集合排序: public st ...

  9. BZOJ3573: [Hnoi2014]米特运输(树上乱搞)

    Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1669  Solved: 1031[Submit][Status][Discuss] Descript ...

  10. Python编程Web框架 :Django 从入门到精通

    Django是一个高级别的Python Web框架,它鼓励快速开发和干净实用的设计. 现在我们开始学习它. Django学习之 第一章:Django介绍 Django学习之 第二章:Django快速上 ...