Cow Ski Area

Time Limit: 1000ms
Memory Limit: 65536KB

This problem will be judged on PKU. Original ID: 2375
64-bit integer IO format: %lld      Java class name: Main

 
Farmer John's cousin, Farmer Ron, who lives in the mountains of Colorado, has recently taught his cows to ski. Unfortunately, his cows are somewhat timid and are afraid to ski among crowds of people at the local resorts, so FR has decided to construct his own private ski area behind his farm.

FR's ski area is a rectangle of width W and length L of 'land squares' (1 <= W <= 500; 1 <= L <= 500). Each land square is an integral height H above sea level (0 <= H <= 9,999). Cows can ski horizontally and vertically between any two adjacent land squares, but never diagonally. Cows can ski from a higher square to a lower square but not the other way and they can ski either direction between two adjacent squares of the same height.

FR wants to build his ski area so that his cows can travel between any two squares by a combination of skiing (as described above) and ski lifts. A ski lift can be built between any two squares of the ski area, regardless of height. Ski lifts are bidirectional. Ski lifts can cross over each other since they can be built at varying heights above the ground, and multiple ski lifts can begin or end at the same square. Since ski lifts are expensive to build, FR wants to minimize the number of ski lifts he has to build to allow his cows to travel between all squares of his ski area.

Find the minimum number of ski lifts required to ensure the cows can travel from any square to any other square via a combination of skiing and lifts.

 

Input

* Line 1: Two space-separated integers: W and L

* Lines 2..L+1: L lines, each with W space-separated integers corresponding to the height of each square of land.

 

Output

* Line 1: A single integer equal to the minimal number of ski lifts FR needs to build to ensure that his cows can travel from any square to any other square via a combination of skiing and ski lifts

 

Sample Input

9 3
1 1 1 2 2 2 1 1 1
1 2 1 2 3 2 1 2 1
1 1 1 2 2 2 1 1 1

Sample Output

3

Hint

This problem has huge input data,use scanf() instead of cin to read data to avoid time limit exceed.

OUTPUT DETAILS:

FR builds the three lifts. Using (1, 1) as the lower-left corner, 
the lifts are (3, 1) <-> (8, 2), (7, 3) <-> (5, 2), and (1, 3) <-> 
(2, 2). All locations are now connected. For example, a cow wishing 
to travel from (9, 1) to (2, 2) would ski (9, 1) -> (8, 1) -> (7, 
1) -> (7, 2) -> (7, 3), take the lift from (7, 3) -> (5, 2), ski 
(5, 2) -> (4, 2) -> (3, 2) -> (3, 3) -> (2, 3) -> (1, 3), and then 
take the lift from (1, 3) - > (2, 2). There is no solution using 
fewer than three lifts.

 

Source

 
解题:强连通缩点求max(入度为0的点数,出度为0的点数)
 
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
#include <vector>
#include <queue>
#include <cstdlib>
#include <string>
#include <set>
#include <stack>
#define LL long long
#define pii pair<int,int>
#define INF 0x3f3f3f3f
using namespace std;
const int maxn = ;
struct arc {
int to,next;
arc(int x = ,int y = -) {
to = x;
next = y;
}
};
arc e[];
int head[maxn],dfn[maxn],belong[maxn],low[maxn],in[maxn],out[maxn];
int tot,scc,idx,n,W,L;
bool instack[maxn];
int mystack[maxn],top;
void add(int u,int v) {
e[tot] = arc(v,head[u]);
head[u] = tot++;
}
void tarjan(int u) {
dfn[u] = low[u] = ++idx;
mystack[top++] = u;
instack[u] = true;
for(int i = head[u]; ~i; i = e[i].next) {
if(!dfn[e[i].to]) {
tarjan(e[i].to);
low[u] = min(low[u],low[e[i].to]);
} else if(instack[e[i].to]) low[u] = min(low[u],dfn[e[i].to]);
}
if(dfn[u] == low[u]) {
scc++;
int v;
do {
v = mystack[--top];
instack[v] = false;
belong[v] = scc;
} while(v != u);
}
}
void init() {
for(int i = ; i < maxn; ++i) {
dfn[i] = low[i] = belong[i] = ;
instack[i] = false;
in[i] = out[i] = ;
}
top = tot = idx = scc = ;
memset(head,-,sizeof(head));
}
int mp[][];
int main() {
const int dir[][] = {-,,,,,,,-};
while(~scanf("%d %d",&W,&L)) {
n = W*L;
init();
for(int i = ; i < L; ++i)
for(int j = ; j < W; ++j)
scanf("%d",mp[i]+j); for(int i = ; i < L; ++i)
for(int j = ; j < W; ++j)
for(int k = ; k < ; ++k) {
int ti = i + dir[k][];
int tj = j + dir[k][];
if(ti < || ti >= L || tj < || tj >= W) continue;
if(mp[ti][tj] <= mp[i][j]) add(i*W+j,ti*W+tj);
}
for(int i = ; i < n; ++i) if(!dfn[i]) tarjan(i);
if(scc < ) puts("");
else{
int x = ,y = ;
for(int i = ; i < n; ++i){
for(int j = head[i]; ~j; j = e[j].next){
if(belong[i] == belong[e[j].to]) continue;
in[belong[e[j].to]]++;
out[belong[i]]++;
}
}
for(int i = ; i <= scc; ++i){
if(!in[i]) x++;
if(!out[i]) y++;
}
printf("%d\n",max(x,y));
}
}
return ;
}

POJ 2375 Cow Ski Area的更多相关文章

  1. POJ 2375 Cow Ski Area(强连通)

    POJ 2375 Cow Ski Area id=2375" target="_blank" style="">题目链接 题意:给定一个滑雪场, ...

  2. POJ 2375 Cow Ski Area (强连通分量)

    题目地址:POJ 2375 对每一个点向与之相邻并h小于该点的点加有向边. 然后强连通缩点.问题就转化成了最少加几条边使得图为强连通图,取入度为0和出度为0的点数的较大者就可以.注意,当强连通分量仅仅 ...

  3. POJ 2375 Cow Ski Area[连通分量]

    题目链接:http://poj.org/problem?id=2375题目大意:一片滑雪场,奶牛只能向相邻的并且不高于他当前高度的地方走.想加上缆车是的奶牛能从低的地方走向高的地方,求最少加的缆车数, ...

  4. poj 2375 Cow Ski Area bfs

    这个题目用tarjan找联通块,缩点,然后统计出入度为0的点理论上是可行的,但问题是会暴栈.考虑到这个题目的特殊性,可以直接用一次bfs找到数字相同且联通的块,这就是一个联通块,然后缩点,统计出入度即 ...

  5. POJ 2375 Cow Ski Area【tarjan】

    题目大意:一个W*L的山,每个山有个高度,当且仅当一个山不比它相邻(有公共边的格子)的山矮时能够滑过去,现在可以装化学电梯来无视山的高度滑雪,问最少装多少电梯使得任意两点都可到达 思路:最后一句话已经 ...

  6. POJ2375 Cow Ski Area (强连通)(缩点)

                                        Cow Ski Area Time Limit: 1000MS   Memory Limit: 65536K Total Sub ...

  7. D - Cow Ski Area

    Description Farmer John's cousin, Farmer Ron, who lives in the mountains of Colorado, has recently t ...

  8. [USACO2004][poj2375]Cow Ski Area(在特殊图上用floodfill代替强联通算法)

    http://poj.org/problem?id=2375 题意:一个500*500的矩形,每个格子都有一个高度,不能从高度低的格子滑到高度高的格子(但相等高度可以滑),已知可以在2个相邻格子上加桥 ...

  9. POJ 3045 Cow Acrobats (贪心)

    POJ 3045 Cow Acrobats 这是个贪心的题目,和网上的很多题解略有不同,我的贪心是从最下层开始,每次找到能使该层的牛的风险最小的方案, 记录风险值,上移一层,继续贪心. 最后从遍历每一 ...

随机推荐

  1. CF1037E Trips (离线+图上构造)

    题目大意:一共有n个人,每天早上会有两个人成为朋友,朋友关系不具有传递性,晚上,它们会组织旅游,如果一个人去旅游,那么他不少于$k$个朋友也要和他去旅游,求每天的最大旅游人数 一开始并没有想到反向建图 ...

  2. [luogu] P2354 [NOI2014]随机数生成器 (贪心)

    Description Input 第1行包含5个整数,依次为 x_0,a,b,c,d ,描述小H采用的随机数生成算法所需的随机种子.第2行包含三个整数 N,M,Q ,表示小H希望生成一个1到 N×M ...

  3. Spring注解+Axis2开发WebService

    用Spring注解方式: 配置扫描指定包下的类 <context:component-scan base-package="包名" />   标识类为spring管理的 ...

  4. COGS——T 2739. 凯伦和咖啡

    http://www.cogs.pro/cogs/problem/problem.php?pid=2739 ★★☆   输入文件:coffee.in   输出文件:coffee.out   简单对比时 ...

  5. 【POJ 2485】 Highways

    [POJ 2485] Highways 最小生成树模板 Prim #include using namespace std; int mp[501][501]; int dis[501]; bool ...

  6. 安装MYSQL错误“conflicts with file from package mysql-libs-*” 解决方法

    安装MYSQL的时候时: 错误现象: [root@localhost opt]# rpm -ivh MySQL-server-5.5.32-1.el6.x86_64.rpm Preparing... ...

  7. httpClient模拟登陆校内某系统

    package com.huowolf; import java.util.ArrayList; import java.util.List; import org.apache.http.HttpE ...

  8. ubuntu16.04安装opencl

    参考链接:https://www.jianshu.com/p/ad808584ce26 安装OpenCL OpenCL是一系列库和头文件,需要根据硬件安装对应的SDK,也就是说,如果希望使用Intel ...

  9. 十分钟掌握diff&patch用法

    作为程序员,了解diff&patch命令是非常必要的.比如说我们发现某个项目有bug代码,而自己又没有svn的提交权限,那么此时最合适的解决方法就是用diff命令做一个补丁发给项目成员.项目成 ...

  10. linux 挂载存储步骤(以emc 5300为例)

    挂载存储有两种方式:光纤模式(hub卡)和iscsi (以太网).两者大体思路是一样的. 1.在应用服务器上安装hub卡,连接光纤到光纤交换机上: 2.在应用服务器安装hub卡驱动程序: 3.在存储上 ...