题目链接:

pid=5317" target="_blank">http://acm.hdu.edu.cn/showproblem.php?pid=5317

Problem Description
Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more and more interesting things about GCD. Today He comes up with Range Greatest Common Divisor Query (RGCDQ). What’s RGCDQ?

Please let me explain it to you gradually. For a positive
integer x, F(x) indicates the number of kind of prime factor of x. For example F(2)=1. F(10)=2, because 10=2*5. F(12)=2, because 12=2*2*3, there are two kinds of prime factor. For each query, we will get an interval [L, R], Hdu wants to know maxGCD(F(i),F(j)) (L≤i<j≤R)

 
Input
There are multiple queries. In the first line of the input file there is an integer T indicates the number of queries.

In the next T lines, each line contains L, R which is mentioned above.



All input items are integers.

1<= T <= 1000000

2<=L < R<=1000000
 
Output
For each query。output the answer in a single line. 

See the sample for more details.
 
Sample Input
2
2 3
3 5
 
Sample Output
1
1
 
Source

题意:

一个函数 :f(x)它的值是x的素因子不同的个数;

如:f(2) = 1, f(3) = 1。

当中(L<=i<j<=R),即区间内随意不相等的两个数的最大公约数的最大值;

PS:

由于2*3*5*7*11*13*17 > 1e6!

所以f(x)的值最大为7;

我们先打表求出每一个f(x)的值;

//int s[maxn][10];//前i个F中j的个数

然后再利用前缀和s[r][i] - s[l-1][i]。

求出区间[l, r]的值。

代码例如以下:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
#define maxn 1000000+7
int prim[maxn];
int s[maxn][10];//前i个F中j的个数
int GCD(int a, int b)
{
if(b==0)
return a;
return GCD(b, a%b);
}
void init()
{
memset(prim, 0, sizeof(prim));
memset(s, 0, sizeof(s));
for(int i = 2; i < maxn; i++)
{
if(prim[i]) continue;
prim[i] = 1;
for(int j = 2; j * i < maxn; j++)
{
prim[j*i]++;//不同素数个数
}
}
s[2][1] = 1;
for(int i = 3; i < maxn; i++)
{
for(int j = 1; j <= 7; j++)
{
s[i][j] = s[i-1][j];
}
s[i][prim[i]]++;
}
}
int main()
{
int t;
int l, r;
init();
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&l,&r);
int c[17];
int k = 0;
for(int i = 1; i <= 7; i++)
{
int tt = s[r][i] - s[l-1][i];
if(tt >= 2)//超过两个以上记为2个就可以
{
c[k++] = i;
c[k++] = i;
}
else if(tt == 1)
{
c[k++] = i;
}
}
int maxx = 1;
for(int i = 0; i < k-1; i++)
{
for(int j = i+1; j < k; j++)
{
int tt = GCD(c[i],c[j]);
maxx = max(maxx, tt);
}
}
printf("%d\n",maxx);
}
return 0;
}

HDU 5317 RGCDQ(素数个数 多校2015啊)的更多相关文章

  1. hdu 5317 RGCDQ(前缀和)

    题目链接:hdu 5317 这题看数据量就知道需要先预处理,然后对每个询问都需要在 O(logn) 以下的复杂度求出,由数学规律可以推出 1 <= F(x) <= 7,所以对每组(L, R ...

  2. hdu 5317 RGCDQ (2015多校第三场第2题)素数打表+前缀和相减求后缀(DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5317 题意:F(x) 表示x的不同质因子的个数结果是求L,R区间中最大的gcd( F(i) , F(j ...

  3. 2015 Multi-University Training Contest 3 hdu 5317 RGCDQ

    RGCDQ Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  4. HDU 5317 RGCDQ (数论素筛)

    RGCDQ Time Limit: 3000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Submit Status ...

  5. ACM学习历程—HDU 5317 RGCDQ (数论)

    Problem Description Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more an ...

  6. HDU 5294 Tricks Device(多校2015 最大流+最短路啊)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5294 Problem Description Innocent Wu follows Dumb Zha ...

  7. HDU 5317 RGCDQ

    题意:f(i)表示i的质因子个数,给l和r,问在这一区间内f(i)之间任意两个数最大的最大公倍数是多少. 解法:先用筛法筛素数,在这个过程中计算f(i),因为f(i)不会超过7,所以用一个二维数组统计 ...

  8. HDU 5317 RGCDQ (质数筛法,序列)

    题意:从1~1000,000的每个自然数质因子分解,不同因子的个数作为其f 值,比如12=2*2*3,则f(12)=2.将100万个数转成他们的f值后变成新的序列seq.接下来T个例子,每个例子一个询 ...

  9. 2015 HDU 多校联赛 5317 RGCDQ 筛法求解

    2015 HDU 多校联赛 5317 RGCDQ 筛法求解 题目  http://acm.hdu.edu.cn/showproblem.php? pid=5317 本题的数据量非常大,測试样例多.数据 ...

随机推荐

  1. Instant Client 配置

    Instant Client Download 选择  Instant Client for Microsoft Windows (32-bit)  由于PL/SQL Developer 不支持64b ...

  2. 微信小程序踩坑- tabBar.list[3].selectedIconPath 大小超过 40kb

    重新启动微信小程序编辑器的时候遇到了这样的一个问题: tabBar.list[3].selectedIconPath 大小超过 40kb 微信小程序开发的过程之中总会出现这样或者那样的错误,需要我们耐 ...

  3. ExtJs4学习(七)MVC中的Store

    Ext.data.Store是extjs中用来进行数据交换和数据交互的标准中间件,不管是Grid还是ComboBox,都是通过它 实现数据读取.类型转换.排序分页和搜索等操作的. Ext.define ...

  4. wepy小程序实现选项卡

    先上效果: 本文是基于前面几篇文章: 使用wepy开发微信小程序商城第一篇:项目初始化 使用wepy开发微信小程序商城第二篇:路由配置和页面结构 使用wepy开发微信小程序商城第三篇:购物车(布局篇) ...

  5. 利用动态图层实现数据的实时显示(arcEngine IDynamiclayer)

    marine 原文利用动态图层实现数据的实时显示(arcEngine IDynamiclayer) 说明:最近一个项目用到这方面知识,文章主要来至网络,后期会加入自己的开发心得.(以下的代码实例中,地 ...

  6. $_SERVER['DOCUMENT_ROOT']

    $_SERVER['DOCUMENT_ROOT'] 一.总结 $_SERVER 是一个包含了诸如头信息(header).路径(path).以及脚本位置(script locations)等等信息的数组 ...

  7. Java 开发规约插件

    阿里巴巴 Java 开发规约插件初体验 阿里巴巴 Java 开发手册 又一次来谈<阿里巴巴 Java 开发手册>,经过这大半年的版本迭代,这本阿里工程师们总结出来避免写出那么多 Bug 的 ...

  8. SQL基础总结——20150730

           SQL SQL 指结构化查询语言 SQL 使我们有能力訪问数据库 SQL 是一种 ANSI(美国国家标准化组织) 的标准计算机语言 SQL 是一门 ANSI 的标准计算机语言.用来訪问和 ...

  9. S​D​I​与​A​S​I 接口具体解释介绍

    分量编码 在对彩色电视信号进行数字化处理和传输是.一种经常使用的方式是分别对其3个分量(Y,R-Y.B-Y)进行数字化编码.这就是分量分量编码.另外还有全信号编码,全信号编码是对彩色全电视信号直接进行 ...

  10. Setup iOS Development Environment.

    Setup iOS Development Environment Install XCode and check-out source code from SVN XCode Please find ...