【NOIP 2011】 计算系数
【题目链接】
https://www.luogu.org/problemnew/show/P1313
【算法】
二项式定理
【代码】
#include<bits/stdc++.h>
using namespace std;
const int P = ; int a,b,k,n,m,ans;
int fac[],inv[]; inline int power(int a,int n)
{
int res = ,b = a;
while (n)
{
if (n & ) res = 1ll * res * b % P;
b = 1ll * b * b % P;
n >>= ;
}
return res;
}
inline void init()
{
int i;
fac[] = ;
for (i = ; i <= k; i++) fac[i] = 1ll * fac[i-] * i % P;
inv[k] = power(fac[k],P-);
for (i = k - ; i >= ; i--) inv[i] = 1ll * inv[i+] * (i + ) % P;
}
inline int C(int n,int m)
{
return 1ll * fac[n] * inv[m] % P * inv[n-m] % P;
} int main()
{ scanf("%d%d%d%d%d",&a,&b,&k,&n,&m);
init();
ans = 1ll * C(k,n) * power(a,n) % P * power(b,m) % P;
printf("%d\n",ans);
return ; }
【NOIP 2011】 计算系数的更多相关文章
- NOIP 2011 计算系数
洛谷 P1313 计算系数 洛谷传送门 JDOJ 1747: [NOIP2011]计算系数 D2 T1 JDOJ传送门 Description 给定一个多项式(ax + by)k,请求出多项式展开后x ...
- Codevs 1137 计算系数 2011年NOIP全国联赛提高组
1137 计算系数 2011年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 给定一个多项式(ax + by ...
- codevs1137 计算系数
1137 计算系数 2011年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 给定一 ...
- NOIP 2011 Day2
tags: 贪心 模拟 NOIP categories: 信息学竞赛 总结 计算系数 Solution 根据二项式定理, \[ \begin{align} (a+b)^n=\sum_{k=0}^nC_ ...
- 【转】TYVJ 1695 计算系数(NOIP2011 TG DAY2 1)
计算系数 题目描述 给定一个多项式(ax + by)k,请求出多项式展开后xn ym项的系数. [数据范围] 对于 30%的数据,有0≤k≤10: 对于 50%的数据,有a = 1,b = 1: 对于 ...
- NOIP2011 计算系数
1计算系数 给定一个多项式 (ax + by)k ,请求出多项式展开后 x n y m 项的系数. [输入] 输入文件名为 factor.in. 共一行,包含 5 个整数,分别为 a,b,k,n,m, ...
- COJ 0138 NOIP201108计算系数
NOIP201108计算系数 难度级别:A: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 给定一个多项式(ax + by)^k,请求出多项式 ...
- 【洛谷p1313】计算系数
(%%%hmr) 计算系数[传送门] 算法呀那个标签: (越来越懒得写辽)(所以今天打算好好写一写) 首先(ax+by)k的计算需要用到二项式定理: 对于(x+y)k,有第r+1项的系数为:Tr+1= ...
- 一本通1648【例 1】「NOIP2011」计算系数
1648: [例 1]「NOIP2011」计算系数 时间限制: 1000 ms 内存限制: 524288 KB [题目描述] 给定一个多项式 (ax+by)k ,请求出多项式展开后 x ...
- 洛谷P1313 计算系数【快速幂+dp】
P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别 ...
随机推荐
- 小程序开发之搭建WebSocket的WSS环境(Apache+WorkerMan框架+PHP)
最近公司的一个IoT项目用到了小程序的WSS协议环境,现在把整个的搭建开发过程分享给大家. 这里我们用的是WorkerMan框架,服务器是CentOS,Web服务器是Apache,开发语言是PHP. ...
- Md2All,让公众号完美显示Latex数学公式
当公众号遇上Latex 大家都知到,公众号连代码块都不支持,更不要说功能强大的Latex公式了.那在Md2All之前,如果想在公众号上显示Latex公式应该怎么办呢? 最通常的做法就是在某个支持Lat ...
- Sql语句优化-查询两表不同行NOT IN、NOT EXISTS、连接查询Left Join
在实际开发中,我们往往需要比较两个或多个表数据的差别,比较那些数据相同那些数据不相同,这时我们有一下三种方法可以使用:1. IN或NOT IN,2. EXIST或NOTEXIST,3.使用连接查询(i ...
- 【Oracle】redo与undo
一 .redo(重做信息) 是Oracle在线(或归档)重做日志文件中记录的信息,万一出现失败时可以利用这些数据来“重放”(或重做)事务.Oracle中记录这些信息的文件叫做redo log file ...
- vegas pro 15解决导入的视频和音频有噪声问题,亲测可行
中文步骤: 按住Shift->点击选项->首选项,松开Shift 点击右上角"内部"选项卡,在最下面的搜索栏输入SO4 找到第二项Enable So4 Compound ...
- jdk?jre?
很多人都搞不懂什么是jdk,什么是jre,只知道电脑安装了这两个就能开发和运行java程序,这里我简单讲讲什么是jdk,什么是jre. jdk,即Java Development Kit,故名思意就是 ...
- CF319E Ping-Pong 线段树 + vector + 思维
Code: #include<bits/stdc++.h> #define N 3000009 #define maxn 3000009 #define ll long long #def ...
- [kuangbin带你飞]专题1-23题目清单总结
[kuangbin带你飞]专题1-23 专题一 简单搜索 POJ 1321 棋盘问题POJ 2251 Dungeon MasterPOJ 3278 Catch That CowPOJ 3279 Fli ...
- python第九周:paramiko多线程、队列
1.paramiko模块 用处:连接远程服务器并执行相关操作 使用方法: SSHClient:连接远程服务器并执行基本命令 import paramiko #创建SSH对象 ssh = paramik ...
- IE-FSC
Top3: Top2: FSC related to Redis: (Redis = https://www.cnblogs.com/ngtest/p/10693750.html) FSC statu ...