hadoop之hive高级操作
在输出结果较多,需要输出到文件中时,可以在hive CLI之外执行hive -e "sql" > output.txt操作
但当SQL语句太长或太多时,这种方式不是很方便,可以考虑将SQL语句存为sql.hql文件中,然后执行 hive -f sql.hql >output.txt操作
如果是多个语句,且要输出到多个文件,只好把SQL写在shell脚本中,下面附一个例子
start_day=$
end_day=$
start_date=`date +"%Y-%m-%d" -d "${start_day}"`
end_date=`date +"%Y-%m-%d" -d "${end_day}"` active="
use ycappdata;
select ctl_dt,'active' ,count(distinct dvid) from sa_daydau_detail
where ctl_dt between '${start_date}' and '${end_date}'
group by ctl_dt,'active' ;" loss="
use ycappdata;
select date_add(from_unixtime(unix_timestamp(lastactivedate,'yyyy/MM/dd hh:mm:ss'),'yyyy-MM-dd'),),'loss' ,count(distinct deviceid) from ext_db_apploginstats
where from_unixtime(unix_timestamp(lastactivedate,'yyyy/MM/dd hh:mm:ss'),'yyyy-MM-dd') between date_sub('${start_date}',) and date_sub('${end_date}',)
group by date_add(from_unixtime(unix_timestamp(lastactivedate,'yyyy/MM/dd hh:mm:ss'),'yyyy-MM-dd'),),'loss';" active_month_distribute="
use ycappdata;
select a.ctl_dt,'active_month_distribute',concat('m',month(start_dt)),count(distinct b.dvid) from
(select ctl_dt,dvid from sa_daydau_detail where ctl_dt between '${start_date}' and '${end_date}')a
left outer join
(select start_dt,dvid from sa_firststartdate_dvid where start_dt between '2017-01-01' and '${end_date}')b
on lower(a.dvid)=lower(b.dvid)
group by a.ctl_dt,'active_month_distribute',concat('m',month(start_dt)) ;" active_date_distribute="
use ycappdata;
select a.ctl_dt,'active_date_distribute',
case when datediff(a.ctl_dt,b.start_dt)= then 'd0' when datediff(a.ctl_dt,b.start_dt)<= then 'd30'
when datediff(a.ctl_dt,b.start_dt)<= then 'd60' when datediff(a.ctl_dt,b.start_dt)<= then 'd90'
when datediff(a.ctl_dt,b.start_dt)<= then 'd120' when datediff(a.ctl_dt,b.start_dt)<= then 'd150'
when datediff(a.ctl_dt,b.start_dt)<= then 'd180' else 'd181' end,count(distinct b.dvid) from
(select ctl_dt,dvid from sa_daydau_detail where ctl_dt between '${start_date}' and '${end_date}')a
left outer join
(select start_dt,dvid from sa_firststartdate_dvid where start_dt between '2017-01-01' and '${end_date}')b
on lower(a.dvid)=lower(b.dvid)
group by a.ctl_dt,'active_date_distribute',case when datediff(a.ctl_dt,b.start_dt)= then 'd0' when datediff(a.ctl_dt,b.start_dt)<= then 'd30'
when datediff(a.ctl_dt,b.start_dt)<= then 'd60' when datediff(a.ctl_dt,b.start_dt)<= then 'd90'
when datediff(a.ctl_dt,b.start_dt)<= then 'd120' when datediff(a.ctl_dt,b.start_dt)<= then 'd150'
when datediff(a.ctl_dt,b.start_dt)<= then 'd180' else 'd181' end ;" hive -e "${active}" >> app_operate.txt
hive -e "${loss}" >> app_operate.txt
hive -e "${active_month_distribute}" >> app_operate.txt
hive -e "${active_date_distribute}" >> app_operate.txt while [ ${start_day} -le ${end_day} ]
do
current_date=`date +"%Y-%m-%d" -d "${start_day}"` week_active="
use ycappdata;
select '${current_date}','week_active',count(distinct dvid) from sa_daydau_detail
where ctl_dt between date_sub('${current_date}',pmod(datediff('${current_date}', '2017-01-02'), )) and '${current_date}'
group by '${current_date}','week_active'; " month_active="
use ycappdata;
select '${current_date}','month_active',count(distinct dvid) from sa_daydau_detail
where ctl_dt between trunc('${current_date}','MM') and '${current_date}'
group by '${current_date}','month_active'; " active_active_distribute="
use ycappdata;
select '${current_date}','active_active_distribute',concat('d',days),count(distinct ab.dvid) from
(select b.dvid,count(distinct b.ctl_dt) as days from
(select ctl_dt,dvid from sa_daydau_detail
where ctl_dt='${current_date}')a
join
(select ctl_dt,dvid from sa_daydau_detail
where ctl_dt between date_sub('${current_date}',) and '${current_date}')b
on lower(a.dvid)=lower(b.dvid)
group by b.dvid )ab
group by '${current_date}','active_active_distribute',concat('d',days);" newuser_retain="
use ycappdata;
select a.start_dt,'newuser_retain',concat('d',datediff(b.ctl_dt,a.start_dt)),count(distinct b.dvid) from
(select start_dt,dvid from sa_firststartdate_dvid
where start_dt between date_sub('${current_date}',) and '${current_date}')a
left outer join
(select ctl_dt,dvid from sa_daydau_detail
where ctl_dt between date_sub('${current_date}',) and '${current_date}')b
on lower(a.dvid)=lower(b.dvid)
group by a.start_dt,'newuser_retain',concat('d',datediff(b.ctl_dt,a.start_dt)); " active_retain="
use ycappdata;
select a.ctl_dt,'active_retain',concat('d',datediff(b.ctl_dt,a.ctl_dt)),count(distinct b.dvid) from
(select ctl_dt,dvid from sa_daydau_detail
where ctl_dt between date_sub('${current_date}',) and '${current_date}')a
left outer join
(select ctl_dt,dvid from sa_daydau_detail
where ctl_dt between date_sub('${current_date}',) and '${current_date}')b
on lower(a.dvid)=lower(b.dvid)
where a.ctl_dt<=b.ctl_dt
group by a.ctl_dt,'active_retain',concat('d',datediff(b.ctl_dt,a.ctl_dt)); " echo "${week_active}"
echo "${month_active}"
echo "${active_active_distribute}"
echo "${newuser_retain}"
echo "${active_retain}" hive -e "${week_active}" >> app_operate.txt
hive -e "${month_active}" >> app_operate.txt
hive -e "${active_active_distribute}" >> app_operate.txt
hive -e "${newuser_retain}" >> app_operate.txt
hive -e "${active_retain}" >> app_operate.txt
start_day=`date +"%Y%m%d" -d "${start_day} 1 days" `
done
hadoop之hive高级操作的更多相关文章
- Hadoop 上Hive 的操作
数据dept表的准备: --创建dept表 CREATE TABLE dept( deptno int, dname string, loc string) ROW FORMAT DELIMITED ...
- 大数据技术之_08_Hive学习_04_压缩和存储(Hive高级)+ 企业级调优(Hive优化)
第8章 压缩和存储(Hive高级)8.1 Hadoop源码编译支持Snappy压缩8.1.1 资源准备8.1.2 jar包安装8.1.3 编译源码8.2 Hadoop压缩配置8.2.1 MR支持的压缩 ...
- 初识Hadoop、Hive
2016.10.13 20:28 很久没有写随笔了,自打小宝出生后就没有写过新的文章.数次来到博客园,想开始新的学习历程,总是被各种琐事中断.一方面确实是最近的项目工作比较忙,各个集群频繁地上线加多版 ...
- Hadoop之Hive篇
想了解Hadoop整体结构及各框架角色建议飞入这篇文章,写的很好:http://www.open-open.com/lib/view/open1385685943484.html .以下文章是本人参考 ...
- 大数据技术生态圈形象比喻(Hadoop、Hive、Spark 关系)
[摘要] 知乎上一篇很不错的科普文章,介绍大数据技术生态圈(Hadoop.Hive.Spark )的关系. 链接地址:https://www.zhihu.com/question/27974418 [ ...
- hadoop记录-hive常见设置
分区表 set hive.exec.dynamic.partition=true; set hive.exec.dynamic.partition.mode=nonstrict;create tabl ...
- hadoop安装hive及java调用hive
1.安装hive 在安装hive前,请确保已经安装好了hadoop,如未安装,请参考centoos 安装hadoop集群进行安装: 1.1.下载,解压 下载hive2.1.1:http://mirr ...
- HIVE简单操作
1.hive命令登录HIVE数据库后,执行show databases;命令可以看到hive数据库中有一个默认的default数据库. [root@hadoop hive]# hive Logging ...
- Hadoop生态圈-Hive快速入门篇之HQL的基础语法
Hadoop生态圈-Hive快速入门篇之HQL的基础语法 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 本篇博客的重点是介绍Hive中常见的数据类型,DDL数据定义,DML数据操作 ...
随机推荐
- Excel、记事本数据导入到数据库
将手机号批量导入数据库.思路:先将要导入的文件传上项目里,然后读取文件的每行数据并插入数据库,操作完后再将上传的文件删除 文件示例: Excel: 记事本: 前台代码: <div class ...
- phpcms视图查询数据
{pc:get sql="SELECT * FROM phpcms WHERE id in ($id) ORDER BY listorder ASC LIMIT 0, 1--"re ...
- Android开发Eclipse中DDMS中Heap使用及GC_EXTERNAL_ALLOC含义
一.先说DDMS中的Heap的使用,通过可以观察VM中的Java内存,但是无法查看通过JNI分配的内存. 直接上图,废话少说... 图一:将要查看内存使用情况的项目Update heap 图二:操作项 ...
- wpf控件开发基础(3) -属性系统(2)
原文:wpf控件开发基础(3) -属性系统(2) 上篇说明了属性存在的一系列问题. 属性默认值,可以保证属性的有效性. 属性验证有效性,可以对输入的属性进行校验 属性强制回调, 即不管属性有无发生变化 ...
- 得知OpenCV研究报告指出系列(一)VS2010+OpenCV2.4.9环境配置
学习OpenCV,首先,当然,要知道如何配置的环境. 余系统的软件和硬件环境,如以下: 以本人的配置环境为例,配置过程例如以下. 第一步 下载及解压OpenCV源代码 尽管非常多第三方站点及一些学习论 ...
- 静态库、动态库,dll文件、lib文件,隐式链接、显式链接浅见
静态链接.动态链接 静态库和动态库分别应用在静态链接方式和动态链接方式中,所谓静态链接方式是指在程序执行之前完成所有的链接工作,把静态库一起打包合入,生成一个可执行的目标文件(EXE文件).所谓动态链 ...
- sdutoj1225--编辑距离(dp:字符串转换)
编辑距离 nid=24#time" style="padding-bottom:0px; margin:0px; padding-left:0px; padding-right:0 ...
- 仿真算法数据结构与算法 C++实现
模拟算法:仿真的全过程,通过改变数学模型参数,进一步观察状态更改这些参数发生变化正当程序. 算法思路:利用随机函数来模拟不可预测发生在自然界.(srand() 和 rand()函数生成一个随机数) 模 ...
- VC++中的C运行时库浅析(控制台程序默认使用单线程的静态链接库,而MFC中的CFile类已暗藏了多线程)
1.概论 运行时库是程序在运行时所需要的库文件,通常运行时库是以LIB或DLL形式提供的.C运行时库诞生于20世纪70年代,当时的程序世界还很单纯,应用程序都是单线程的,多任务或多线程机制在此时还属于 ...
- Ubuntu 搭建 GitLab 笔记
简介 GitLab 社区版可以提供许多与 GitHub 相同的功能,且部署在属于自己的机器上,我们会因为网络及其他一些问题而不便使用 GitHub ,这时部署一个 GitLab 是最好的选择. 下载 ...